NASA/CR-2003-212476 # Efficient, Low-Cost Fan System Research for General Aviation and Commuter Aircraft G.L. Merrill Advanced Propulsion, Inc., Phoenix, Arizona Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types: - TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations. - TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis. - CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees. - CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA. - SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest. - TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission. Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos. For more information about the NASA STI Program Office, see the following: - Access the NASA STI Program Home Page at http://www.sti.nasa.gov - E-mail your question via the Internet to help@sti.nasa.gov - Fax your question to the NASA Access Help Desk at 301–621–0134 - Telephone the NASA Access Help Desk at 301–621–0390 - Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076 #### NASA/CR—2003-212476 # Efficient, Low-Cost Fan System Research for General Aviation and Commuter Aircraft G.L. Merrill Advanced Propulsion, Inc., Phoenix, Arizona Prepared under Contract NAS3-27644 National Aeronautics and Space Administration Glenn Research Center #### **Document History** This research was originally published internally as AST020 in December 1997. Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Note that at the time of printing, the NASA Lewis Research Center was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field. Both names appear in these proceedings. Available from NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100 ### EFFICIENT, LOW-COST FAN SYSTEM RESEARCH FOR GENERAL AVIATION & COMMUTER AIRCRAFT #### **PREFACE** This investigation was conducted by Advanced Propulsion Inc. of Phoenix, Arizona under Contract NAS3-27644, administered by the National Aeronautics and Space Administration, Lewis Research Center. The Advanced Propulsion Inc. principal investigator was G. L. Merrill. Aerodynamics design and analysis support was provided by B. Cassem. Mechanical/structural design and analysis support was provided by G. Pittard. The NASA Contracting Officers were K. R. Brocone and H. Shaw. The NASA Contracting Officer's Technical Representative, J. D. Eisenberg, provided technical direction for the program. | | • | | |--|---|--| ### EFFICIENT, LOW-COST FAN SYSTEM RESEARCH FOR GENERAL AVIATION & COMMUTER AIRCRAFT #### **ABSTRACT** Research investigations conducted by Advanced Propulsion Inc., which were intended to validate efficient, low-cost fan system concepts, are described in this report. The report briefly describes the broad range of applicability of the fan system investigated. It defines the expected benefits the fan system would have on new, advanced turbofan engines for specific, lower-speed aircraft applications. The overall concept is shown to apply specifically to future general aviation and commuter aircraft optimized for relatively short-range missions and to typical cruising flight speeds in the range of 200 to 400 knots. Basic fan design premises are defined that are intended to yield high efficiency level in terms of both stage adiabatic efficiency and turbofan engine propulsive efficiency at lower flight speeds than are now addressed with turbofan propulsion systems designed specifically for executive and commercial jet aircraft. The premises include system and mission optimized fan pressure ratio ranges for the range of relevant flight speeds of future general aviation private aircraft and low-density, shorthaul airliners that are commonally referred to as commuters. The premises also include the use of current state-of-the-art aerodynamic loading parameters yielding velocity triangles that are very similar to those of current, high pressure ratio, transonic stages in larger turbofans. Such premises are shown to yield very low fan rotational speed versus current practice. In turn, this is shown to yield high potential for use of substantially different materials and mechanical design criteria that can result in dramatically lower manufacturing cost. Materials, manufacturing, stress, vibration, bird-strike and erosion investigations are reported that sought low-cost solutions for the fan rotor design, given the unique, low-speed characteristics of the predicated fan design. The materials investigations included fiber reinforced plastics and commercially available aluminum alloys. The manufacturing investigations included injection molded blading, precision forged blading with blade-root machining and forged/numerical controlled machined integral wheel (blisk) processing. The aluminum alloy blisk rotor configuration is reported to have the best combination of overall performance, including one and four-pound bird strike capability and lower manufacturing cost. The fan stator system, mechanically integrated with the engine front frame, is described to be most suitable as an assembly of aluminum precision investment cast components having minimal machining. The report describes parametric aerodynamic design analyses that yielded 91+ percent adiabatic efficiency for a 1.10 pressure ratio, 38.5 pound-per-second fan for a 200-knot-class small turbofan. These results obtained with the USAF UDO300 code suggests that, with follow-on use of an advanced computational aerodynamics code and with a comprehensive component development program, adiabatic efficiencies in the range of 92 to 93 percent may be obtained over the ranges of predicated pressure ratios from 1.08 to 1.35 and flows from 38 to 150 pounds per second. The report ends with the Advanced Propulsion Inc. conclusions that the investigations carried out in this program substantially validated optimistic preliminary design premises used in prior systems/mission analyses on the applicability of turbofan propulsion to lower-speed general aviation and commuter aircraft. #### **TABLE OF CONTENTS** | ranger i de la companya de la compa | Page | |--|------| | 1.0 INTRODUCTION | 1 | | 2.0 TECHNICAL PREMISES OF THE RESEARCH | 1 | | 2.1 FAN DESIGN BASELINES | 3 | | 3.0 LOW-COST MANUFACTURING INVESTIGATIONS | 6 | | 4.0 AERODYNAMIC DESIGN AND ANALYSIS | 10 | | 5.0 MECHANICAL DESIGN AND STRUCTURAL ANALYSIS | 12 | | 6.0 FAN-TECHNOLOGY APPLICATIONS AND BENEFITS | 20 | | 6.1 LOW-DENSITY, SHORTHAUL AIRLINERS | 20 | | 6.2 REDUCED NOISE WITH EFFICIENT, LOW-COST FANS | 23 | | 7.0 CONCLUSIONS | 24 | | APPENDIX A, FAN STAGE AERODYNAMIC DESIGN (UDO300M OUTPUT) | 25 | | APPENDIX B, FAN BLADE STRESS/VIBRATION SOLID MODEL ANSYS OUTPUT GRAPHICS | 59 | #### EFFICIENT, LOW-COST FAN SYSTEM RESEARCH FOR GENERAL AVIATION & COMMUTER AIRCRAFT #### 1.0 INTRODUCTION The National Aeronautics and Space Administration and the Federal Aviation Administration have missions to facilitate advances in technologies applicable to General Aviation (GA) and Commuter (low-density, shorthaul) aircraft. It is widely perceived that propulsion for these aviation segments is barrier technology. Exactly how significant improvements can be achieved constitutes a pivotal issue. Definite needs exist for major improvements in propulsion/aircraft performance, fuel efficiency, reduced community noise, lowered chemical emissions, increased reliability and integrity, reduced cabin noise and vibration and dramatically reduced operating and ownership cost. These are, in fact, the essential improvements that mission-optimized, high bypass ratio turbofans have provided over the past few decades for commercial and executive aviation segments. Turbofan propulsion is now the definitive means of propulsion for
all aircraft except those that are the subject of this investigative research effort. It is a reasonable assumption that similarly mission-optimized turbofans could yield similar benefits for general aviation and low-density shorthaul aviation. During the period 1984 to the present, Advanced Propulsion Inc. has performed broad ranging, internally-funded studies based upon this assumption. The studies include turbofan engine and airplane conceptual and preliminary design, comprehensive mission and tradeoff analyses and in-depth cost/business analyses. More than twenty different engine/airplane/mission combinations have been evaluated in these studies, including single and twin-engine private light airplanes, work airplanes such as crop application airplanes and package freighters, as well as low-density shorthaul airliners ranging from twelve to forty four seats. The results of these studies have been very positive in terms of the potential of mission-optimized turbofans yielding major improvements versus all the needs cited above. In order to proceed with further technical and business developments it is prudent to further validate the assumptions and premises of the studies. Fan system design is a key element of Advanced Propulsion Inc. validation efforts for reasons made clear in the body of this report. In turbofan engines, the fan system design involves nearly all of the aircraft system-level tradeoff and optimization analyses. It is key in all the propulsion system weight, drag and fuel efficiency tradeoffs, in all the aircraft performance trades and in the final economic analyses of new aircraft products. The predications and premises of the investigations conducted in the present research were derived from the systems studies previously conducted by Advanced Propulsion Inc. This report and its conclusions show that the work has yielded a higher level of confidence in the fan system design fundamentals that were addressed. #### 2.0 TECHNICAL PREMISES OF THE RESEARCH The overreaching, implied premise of the investigation is that internal momentum exchange propulsion--turbofan jet propulsion can be superior, in the several ways described above, to open propeller propulsion in applications having as little as 200 to 400 knots design flight speeds. (There is a general technical concensus that open-propeller propulsion is more fuel-efficient at these speeds and is an essential imperative for aircraft of this class.) There are no engine/aircraft examples flying that tend to substantiate this turbofan premise. There are no known turbofans mission-optimized for 200 knots cruise speed. The first technical premise of the present study is that the fan design effort is addressed to aircraft having cruise speeds/altitudes in the shaded box of Figure 1. The second technical premise is concerned with the selection of fan pressure ratio, a principle determinant of turbofan engine propulsive efficiency. The ongoing systems and mission analysis work of Advanced Propulsion Inc. deals with the separate elements of overall propulsion system efficiency: - CYCLE THERMAL EFFICIENCY - o PROPULSIVE EFFICIENCY - SYSTEM WEIGHT EFFICIENCY - o SYSTEM DRAG EFFICIENCY There are numerous interrelationships between these efficiency elements and between the component and engine design variables that affect them. Furthermore, there are numerous interrelationships between the engine elements and design variables and the aircraft design for which the new propulsion system is intended. A rigorous, systematic approach is required in order to define all the design variables that quantify a best set that meets the overall propulsion system efficiency goals and the aircraft size, performance and cost goals. Fan pressure ratio is one of the engine design variables that affect the propulsive efficiency element. Selection of the best fan pressure ratio for an aircraft design cruise flight speed involves numerous tradeoffs relating to engine size, weight, nacelle drag and cost. Advanced Propulsion Inc. has made those trades for numerous aircraft point designs having design cruise speeds between 200 and 400 knots. The best solutions fall approximately on a line of pressure ratio versus cruise speed that represents a constant fan-jet ideal propulsive efficiency of 80 percent. This fan pressure ratio versus aircraft design cruise speed relationship is illustrated in Figure 2. The term, ideal propulsive efficiency, is defined on this figure. **FIGURE 1.** Aircraft performance envelope. FIGURE 2. Fan pressure ratio vs speed. #### 2.1 FAN DESIGN BASELINES Initial proposal baselines for the fan design were further refined as definitive baselines for the investigation. A representative fan stage was selected that would yield the broadest applicability of the study results. The stage was adapted from prior general aviation and commuter system study results. The design parameters were selected to yield very high bypass ratio turbofans suitable for airplanes having design cruise speeds from 200 to 300 knots. The stage is intended to be uprated in increments of flow and pressure ratio as a function of fan speed (rpm) and to be scaleable over a broad range. Because the smallest of the potential applications represents the toughest case for meeting efficiency and production cost goals, it was elected to study a fan sized at 19 inches diameter and corrected flow less than 40 lb/sec. The following table lists data on the selected fan and one representative uprated derivative, and Figure 3 illustrates the basic configuration and additional data. | FAN CONFIGURATION | BASELINE | UPRATE | |--|---|--| | AIRPLANE SPEED CLASS ENGINE THRUST CLASS FAN FLOW FAN PRESSURE RATIO TIP SPEED SPEED TIP DIAMETER INLET HUB/TIP RATIO BLADE ASPECT RATIO BLADE/STATOR VANE NUMBERS | 200-KNOT
500-LB
38.45 LB/SEC
1.10
734 FPS
8844 RPM
19.00 IN
0.316
1.88
17/27 | 300-KNOT
800-LB
47.18 LB/SEC
1.19
983 FPS
11,847 RPM
19.00 IN
0.316
1.88 | | DRUDE ATTACK AND MOMBERS | 11/21 | 17/27 | FIGURE 3. Baseline fan configuration for aerodynamic design analyses and manufacturing process/cost studies. The initial, design-point velocity triangles for the baseline and uprated stages are shown in Figure 4. The close similarity in the triangles confirm that only flowpath adjustments will be required to accomplish both the baseline and the uprated version with the same set of rotor and stator blading. The rotor tip relative Mach number is subsonic on both stages, and the rotor is shown to have about 50 degrees of hub turning in both stages. The aerodynamic loadings, in terms of diffusion factor and other such empirical factors, are similar to the larger transonic fans in executive jets and commercial airliners. Considering these factors, the rational adiabatic efficiency goal for these stages is 92 percent. FIGURE 4. Velocity triangles for study baseline and uprated fan stages. It should be noted that although the sea level static thrust of the uprated engine is about 1.8 times the baseline engine, the thermodynamic power is about 2.25 times as great. The increased flow and pressure ratio of the fan correlates directly with this ratio. For purposes of this investigation, complete nacelle and bypass-duct system flowpaths were modeled for both the baseline and uprated fan stages. The initial layout of the geometry used in the aerodynamic analyses is depicted in Figure 5. The study baseline is shown above the centerline and the uprated version is shown below the centerline. The gas generator section length differs between the baseline and the uprated version by 1.75 inches. The baseline engine bypass ratio is 18.6, and the higher performance uprated engine is about 13.5. This difference is reflected in the core/bypass splitter and the core inlet flowpath geometries. Both flowpath layouts depict variable-geometry, two-position fan jet nozzles. Thus far, it has not been determined by engine and aircraft takeoff, climb and cruise performance analyses that the two-position nozzle system is an essential feature for good performance matching. A full set of engine component off-design maps will be required to obtain adequate performance data to make the determination. FIGURE 5. Fan system flowpath layouts of baseline and typical uprated turbofans. #### 3.0 LOW-COST MANUFACTURING INVESTIGATIONS System studies on general aviation and commuter aircraft are conclusive--substantial cost reductions are required in gas turbine propulsion systems if general aviation and commuter customers are to have the enormous benefits of turbine propulsion. Advanced Propulsion Inc. has determined that there are numerous cost reduction opportunities in predicating new propulsion product lines for these markets. The use of new, lower-cost materials and manufacturing methods applicable to the new classes of is, of course, a fundamental imperative. The fan systems of these potential, new product lines present significant opportunities for advantageous changes in design and manufacture. Larger, more robust fan systems, both rotor and stator elements, and much lower rotor tip speeds are the enabling factors for the future 200 to 400 knot class aircraft propulsion systems that are the subject of this investigation. The change from titanium fan rotors to aluminum or reinforced plastic (composites) has a potential for cost reduction up to a factor of ten. A further substantial cost reduction potential exists for use of these materials in an integrated assembly of fan stator and front frame. The investigative approach for the present study was
to design a 17-bladed fan rotor and a 27-vaned bypass stator/front frame assembly. Such designs could alternatively use aluminum alloys or fiber reinforced plastic, and be produced by relevant high volume rate means. In the case of aluminum, the rotor could have loose blades and a separate rotor hub. The blades would be precision forged to finished dimensions on all surfaces except the dovetail attachment which would be NC machined. Alternatively, the rotor could be an integrally-bladed (blisk) configuration. Preliminary manufacturing drawings were prepared for these two configurations. These drawings, Figure 6 and Figure 7, were evaluated by several engine parts suppliers. Two clearly best quotations were obtained. In the case of plastic, an extensive review of candidate materials and production methods was made. The continuous fiber layup method was rejected on the basis much higher cost than the precision injection molding alternative. For the injection molding, a proprietary, graphite fiber/fluorocarbon reinforced polyamide-imide resin was selected on the basis of its having adequate mechanical and heat resistant properties for this application. The drawing prepared for vendor review and quotations is show in Figure 8. The lowest quotation on the precision forged blade candidate was \$86.00 each at volume rates of 2000 per month, with one-time \$93,700 tooling charge. The cost was estimated for the forged aluminum, NC-machined hub, assembly and balancing for a total rotor cost of approximately \$2500.00. A further estimate was made of the stator elements of a precision investment cast front frame, and the total fan system cost was totaled at about \$4000.00 in quantities greater than 1000 units per year. Advanced Propulsion Inc. estimates that this is about 20 percent of the cost a similar-size titanium fan system on a typical low-volume turbofan engine produced for executive jets. The lowest quotation on the blisk configuration was a ROM estimate of less than \$2200.00. Advanced Propulsion Inc. performed cost analyses on its own propritary NC machining and tooling concept. With these methods, total rotor cost is estimated at \$1740.00 at production rates between 1000 and 4000 units per year and total fan system cost was estimated at \$3800.00 per unit. The supplier of the proprietary injection molded plastic spent substantial effort in preparing a molded fan blade proposal. Engineering discussions suggested a potential unit price in the area of \$25.00. In a separate business decision, the supplier finally declined to submit their quotation. The limited scope of this project prevents further development of injection molded plastic alternatives, despite the low-cost promise. FIGURE 6. Precision forged fan blade preliminary manufacturing drawing. FIGURE 7. Forged aluminum, NC-machined blisk preliminary manufacturing drawing. FIGURE 8. Precision molded Torlon fan blade preliminary manufacturing drawing. #### 4.0 AERODYNAMIC DESIGN AND ANALYSIS The aerodynamic design and analysis effort was structured to carefully follow the design premises of the baseline stage preliminary design described in Paragraph 2.0 and 2.1. The following is a partial list of the many parameters incorporated in the design/analysis model: - o Design Corrected Flow, 38.45 lb/sec - o Design Point Pressure Ratio, 1.10 - o Inlet Axial Velocity, 294 ft/sec - o Inlet Hub/Tip Ratio, 0.316 - o Inlet Tip Diameter, 19.00 in - o Rotor Corrected Tip Speed, 734 ft/sec - o Rotor Corrected Speed, 8844 rpm - o Rotor Blade Aspect Ratio, 1.88 - o Blade Root Thickness/Chord, 10 percent - o Blade Tip Thickness/Chord, 4 percent - o Number of Rotor Blades, 17 - o Stator Vane Aspect Ratio, 1.8 - o Number of Stator Vanes, 27 The commonly-used U.S. Air Force compressor design program, UD0300M, was used to model and perform parametric analyses on the baseline fan stage. (The version of the code obtained from the Air Force lacked an output data plotting routine and did not include provision for splitting core/bypass flow ahead of the fan stator. Writing new code, Advanced Propulsion Inc. was able to correct the latter deficiency but not the former.) Initial runs of the baseline stage configuration clearly demonstrated that the preliminary design was valid. Appendix A of this report is a complete output of one of these runs showing over 90 percent isentropic efficiency. It was originally planned to perform a broad range of parametric analyses, including variable parameters such as diffusion factor, aspect ratio, rotational speed, finish and tip clearance. The continuing difficulties in using UD0300M made this impractical, and high efficiency predictions in the early results obviated the need. The parametrics that were performed were encouraging however. For example, modelled with substantially higher axial velocity and lower diffusion factors, the stage was shown to drop about 1.5 percent in efficiency. This demonstrated that the initial baseline is essentially correct. In a later effort, rotor hub contouring was explored, resulting in a stage efficiency increase of about one percent. This put adiabatic efficiency near the 92 percent efficiency goal. The final blisk rotor configuration with the beneficial hub modification is shown in full scale in Figure 9. It is essential that low pressure ratio fans for lower flight-speed airplanes have good operating characteristics, including high surge margins at the design point, broad efficiency islands and broad flow range between surge and choke. In an initial evaluation, the baseline stage was shown to have these desireable characteristics. The limited scope of this program prevented full development of a definitive fan stage aerodynamic design. The program did achieve a well developed go-foward baseline and the analytical results yielded high confidence in the potential to achieve 92-to-93 percent efficiency with implementation of a computational fluid dyanamics design effort. FIGURE 9. Final blisk rotor configuration from aerodynamics design/analysis effort. #### 5.0 MECHANICAL DESIGN AND STRUCTURAL ANALYSIS The mechanical design and structural analysis task element of the program was structured as an extensive preliminary design review. It covered essentially all design suitability elements applicable to the fan system of a FAR Part 33 certified turbofan engine. To assure that the low-cost, efficient fan system designed in this program is valid in terms of stringent engine mechanical design criteria, the effort was comprehensive. The list of criteria examined in this program is provided in Figure 10. The ability of the fan system design to meet one-pound and four-pound bird strike criteria for FAA certification is of utmost significance. It is the usual concensus that only carefully designed and tested, larger titanium fans on engines for executive and commercial aircraft can meet this test. Advanced Propulsion Inc. has determined by extensive analyses that the aluminum, blisk-configuration fan defined in this program will also meet the criteria and pass the one-pound and four-pound bird strike test. The Figure 11 through Figure 16 show the detailed bird strike evaluation methods and results. The material presented in these figures is comprehensive and self explanatory. It should be noted, however, that the blisk material of choice was changed from aluminum alloy 6061-T6 to alloy 7075-T73 in order to provide substantially greater stress margins for bird strike events and increased fatigue life. The low blade rotational and relative velocities of the low-cost, efficient fan system design are important factors in the ability to meet bird strike criteria. This same feature of the design contributes to its remarkable resistance to rain and sand erosion. A similar amount of work was done on the erosion problem, but this work is not presented in detail in this report. The basic result is that the low-speed aluminum fan calculated erosion rate is almost exactly equal to the rate on conventional high-speed titanium fans. Also, it was concluded that the performance degradation effects will be less on the aluminum fan because the airfoils have more robust thickness/chord ratios and leading/trailing edge thicknesses, plus, the fact they operate in the low-to-medium subsonic range--not the transonic/supersonic range of typical titanium fans. The blade airfoils were modelled for extensive computer stress, deflection and vibration analysis under dynamic and aerodynamic loads. The results provided in representative plots included in Appendix B show that the current design is a conservative, successful design. A further indication of this is illustrated in the classic Campbell Diagram depicted in Figures 17 and 18. The various vibratory modes are exactly where they are desired to be versus the rotational speed scale. Figure 17 through Figure 22 show the methods and results of the analyses of vibration margins, low cycle fatigue and high cycle fatigue. The predicated Installation Manual (IM) limits distortion limits are well above typical field distortion. The overall structural analysis results indicate the low-cost, efficient fan design is conservative and successful. The precision-forged, loose-bladed configuration and the reinforced plastic configuration, as well as the aluminum blisk, were carried through the entire structural analysis task. A complete dovetail design/analysis effort was conducted for both the aluminum and plastic blades, enabling the loose-bladed option to be exercised if it were determined to be the low-cost option. (The blisk configuration was finally selected.) One of the principal goals of the mechanical design and structural analysis tasking was to assure that the design met a fan system weight goal of less than 15 pounds. The goal was achieved. The solution fan rotor blisk weighs an estimated 9 pounds and the stator elements of the front frame assembly weigh 5 pounds. The total estimated weight of 14
pounds is about one-third the weight of a conventional, constant-speed propeller system capable of absorbing the same 200+ horsepower load. ``` MAX STRESS WITH Kt < Ff @ 100,000 CYCLES. HOOP STRESS FIELD TO BE ISOLATED FROM HOOK STRESS FIELD BY ELLIPTICAL INLET DISTORTION(CDI) ALLOWED (2E) OF 3% FOR BLADED DISK, 2% FOR BLISK MAX L.E. SHEAR STRESS < Fsu . FOLD-OVER DAMAGE ASSESSMENT TO BE MADE FROM BENDING STRESS; 135% SHEDDING SPEED REQ'D; LOBE SHEAR < Fsu, LOBE BENDING < 1.5Fty INFLECTION POINT FROM RING BENDING TO BE ASSESSED IN DISK SLOT 10% STRONGER THAN AIRFOIL ROOT FOR BENDING AND SHEAR LOADS. CANTED DOVETALL BEAVER TOOTH OR EQUIV..AXIAL LOAD CAPACITY ATTACHMENT CONTACT FACE COAT ASSESSMENT REQ'D FOR FRET LCF TO BE CONTROLLED IN AIRFOIL SECTION OF TRANSITION FILLET MAX STRESS WITH RING BENDING INCLUDED < FF(\hat{Q}) 100,000 CYCLES MAX L.E. SHEAR STRESS < Fsu. BIRD VELOCITY THAT SETS L.E. SHEAR AT Fsu TO BE DETERMINED 1.0 L.B. 1.OADING TO BE MAXIMIZED BETWEEN 50 AND 150 KNOTS 1/REV BLADE TO HAVE 10% FREQ MARGIN ON 1E @ 105% SPEED SIG AVG TANG = .9 X Ftu @ 200 DEG F AND N= 1.35 X 9000 RPM. 20% STRONGER THAN AIRFOIL ROOT FOR BENDING LOADS. 2/REV BLADE TO HAVE 10% MARGIN ON 2E @ 105% SPEED. GOAL TO PASS THROUGH 3E @ LOWEST SPEED POSSIBLE. MAX STRESS WITH Kt, < Ff @ 100,000 CYCLES DOVETAIL FRICTION FACTOR = .05 SELECTION REQUIRES MIN ELONGATION = OR >7% AIRFOIL HARDNESS ASSESSMENT REQ'D FOR FOD ST BENDING MODE WEAK SECTION > 20% SPAN 4.0 LB LOADING TO BE BASED ON 200 KNOTS GOAL TO PASS THROUGH 2E @ < 50% SPEED. OPERATING BEARING STRESS < .67Fty MAX OPERATING TEMP 200 DEG PRELIMINARY DESIGN CRITERIA (PDR) ATTACHMENT DESIGN (BLADED DISK) 135% OF MECH DESIGN SPEED 135% SHEDDING SPEED < 1% BLOCKAGE PERMITTED NECK TENSILE < Flu. AT RESONANT 2E SPEED BURST FACTOR = .9 DISK BURST SPEED METALLIC DISK BORE STRESS BLISK RIM DESIGN MATERIALS VIBRATION BIRD ONE, I.O LB BIRD @ T/O CONDITION, V=NORMAL FLIGHT UP TO ONE,4.0 LB BIRD @ 200 KNOTS CONTAINED,MOUNTED,SHUTDOWN,NO FIRE 00.000 CYCLES BLADE & DISK ATTACHMENT (BLADED DISK) OUTERMOST RETENTION FEATURE FOR BLADED DISK 1.5 BLADE IMBALANCE FOR BLADED DISK 25% MARGIN ON DISK DIAMETRAL VIBES 75% THRUST POST EVENT NPRM PROPOSED RULES FOR BIRD 1.0 AIRFOIL IMBALANCE FOR BLISK 9000 RPM, 747 FT/SEC TIP SPEED VO ATTACHMENT UNZIPPERING 135% SHEDDING FOR BLADES FLUTTER PARAMETER GOALS 3.5 RAD/SEC, 10E07 CYCLES 80% AIRFOIL FOR BLISK MECHANICAL DESIGN SPEED I'REV OR 2/REV BLADÉ 1.6 TORSION 33 BENDING 00,000 CYCLES DISK 19 INCH FAN. 17 BLADES 135% DISK WATER CONTAINMENT HAIL BURST SPEED <u>i</u> BLADE OUT VIBRATION ``` CDI ALLOWED (3E) OF 3% FOR BLADED, 2% FOR BLISK @ RESONANT SPEED FIGURE 10. Structural design criteria and requirements list for low-cost fan system. FOD GYRO LGF FIGURE 11. Bird slicing at 100 knots -- (maximum MVn at 100 knots). FIGURE 12. Lower bird velocity maximizes unit loading at leading edge. FIGURE 13. One-pound bird strike, 7.68-in radius, 8844 rpm -- two critical regions. FIGURE 14. One-pound bird strike, 7.68-in radius, 8844 rpm -- shear stress vs chord. FIGURE 16. Shear stress margin is higher on low-cost aluminum fan than on a conventional, high tip speed titanium fan for 0.8 Mach aircraft. THARMONIC CONTENT FIGURE 19. Typical inlet distortion decrease with tip speed and harmonic order. NASA/CR-2003-212476 **FIGURE 21.** Aluminum blade meets 50% criteria for high cycle fatigue at IM limits. Add shot peen processing for increased robustness. FIGURE 22. Composite blade has high vibration margin. IM limits have factor of three. #### 6.0 FAN-TECHNOLOGY APPLICATIONS AND BENEFITS The efficient, low-cost fan system as defined in this investigation is applicable to turbofan engines in the 500-to-5000 pound thrust range, mission-optimized for shorter-range, lower-speed aircraft. General aviation and low-density, shorthaul aircraft represent about eighty five percent of all aircraft in the world. Their missions specifics are such that 200 to 400 knots is the pertinent cruise speed range. Turbofans of much lower fan pressure ratio, and higher consequent bypass ratio, are required for optimal aircraft mission performance in this cruise speed range. The prior general aviation private aircraft system studies conducted by Advanced Propulsion Inc. provide substantive evidence that fans of this kind are essential to meet future requirements for private aircraft takeoff, climb rate and cruise performance, fuel efficiency, 90% reduction in community noise and 95% reduction in cabin noise and vibration. #### 6.1 LOW-DENSITY, SHORTHAUL AIRLINERS Typical missions for low-density, shorthaul airliners dictate performance optimizations for stage lengths ranging from 75 to 250 miles and payload/range capability to give three stages between fuelings. About 10,000 such airplanes in worldwide service have cabin capacities in destinct groupings; e.g., 8-12, 19, 30 and about 45 passengers. Airliners having greater capabilities than this so-called commuter class are properly termed regional airliners. Past low-density, shorthaul airliners are all powered by piston/propeller and turboprop propulsion systems made available by engine and propeller manufacturers. All these airplanes have cruising speeds in the range of 200 to 300 knots--essentially optimal for the shorter stage lengths on which they are used. Advanced Propulsion Inc. has conducted extensive system studies of optimized-turbofan propulsion for airliners having exactly the same capacity and performance capabilities as the past, existent world fleet. Figure 23 is a three-view drawing of a 19 passenger study aircraft. It is annotated with a large amount of technical data. Figure 24 is a table comparing pertinent data on this preliminary design with data on two existent airliners having comparable capacity and performance in every aspect. The salient attributes of the turbofan-powered study airplane are that it is about three-quarters the weight of the turboprops and has about three-quarters the mission fuel consumption. Not shown on the chart are the estimates of 12 EPNdB lower takeoff and sideline noise and about 15 dB(A) reduction in cabin noise and vibration levels. The engine in this preliminary design would use a fan of the kind that is subject of this investigation. The 29-inch diameter fan would pass 118 lb/sec of corrected airflow and have a pressure ratio of 1.145. The turbofan predicated has 1800 pounds thrust and a bypass ratio of about 15. This turbofan is merely typical of a variety of engines studied that are applicable to 200-to-300 knot class low-density, shorthaul airliners ranging from 12 to 66 passenger capacities. After two decades of growth in the regional-airline turboprop fleets, a sudden and unexpected change of course is underway. During the past four years, two new turbofan-powered, 50-passenger regional jets have come to dominate this market, garnering orders for about 650 airplanes. Development of additional, smaller and larger turbofan-powered aircraft for the regional market have been announced. All of the new airplanes will be produced by overseas manufacturers. The U.S. producers that once dominated the small turboprop airliner markets are no longer major competitors. FIGURE 23. 19-Passenger low-density, shorthaul airliner preliminary design study. | PROPULSION SIZE/TYPE ACCOMODATIONS ACCOMODATIONS MAX TAKEOFF WEIGHT (Ib) INST'D. PROPULSION WEIGHT (Ib) MAX DAYLOAD (Ib) MAX PAYLOAD (Ib) MAX FUEL (Ib) MAX PAYLOAD (Ib) MAX FUEL (Ib) MAX PAYLOAD (ID) | NER 19 RAYTHEON 1900C 800 LBf TWO 1100 SHP OFANS TURBOPROPS COEW/19 PASSENGERS 900 16,600 8700 8700 20 1890 100 2848 12,000 285/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 256/8000 | 1WO
TURE
TWO
PASS
263
230
230
675 (P | |---
--|--| | (lb)
EIGHT (lb)
LT (kt/ft)
LT (kt/ft) | | | | (lb) EIGHT (lb) ('kt/ft) LT (kt/ft) | | TWO CREW/19 PASSENGERS 15,212 9570 1690 5642 3980 3024 263/15,000 230/25,000 675 (PLUS RES.) | | (lb) EIGHT (lb) LT (kt/ft) LT (kt/ft) | | 15,212
9570
1690
5642
3980
3024
230/25,000
675 (PLUS RES.) | | EIGHT (Ib) (kt/ft) LT (kt/ft) | | 9570
1690
5642
3980
3024
263/15,000
230/25,000
675 (PLUS RES.) | | EIGHT (Ib) r (kt/ft) LT (kt/ft) | | 1690
5642
3980
3024
263/15,000
230/25,000
675 (PLUS RES.) | | | | 5642
3980
3024
263/15,000
230/25,000
675 (PLUS RES.) | | | | 3980
3024
263/15,000
230/25,000
675 (PLUS RES.) | | | | 3024
263/15,000
230/25,000
675 (PLUS RES.) | | | | 263/15,000
230/25,000
675 (PLUS RES.) | | | | 230/25,000
675 (PLUS RES.) | | | | 675 (PLUS RES.) | | | | | | | | 0.45 | | MAX RATE OF CLIMB (ft/min) 2200 | | 2080 | | TAKEOFF DISTANCE (ft) 3200 | 3260 | 3200 | | STALL SPEED (kt) 77 | 77 | 98 | | WING AREA (sq ft) | 10 303 | 271.3 | | WING SPAN (ft) | 0.2 54.5 | . 52.0 | | FUSELAGE LENGTH (ft) 47.5 | 7.5 53.1 | 44 | | FUSELAGE DIAMETER (ft) 7.50 | 50 5.8 | 6.5 | | CABIN WIDTH (in) | 54 | 73 | | (in) | | 71 | | SEAT PITCH(in) 31 | 30 | 29 | | BAGGAGE VOLUME (cu ft) 150 | 50 182 | 06 | | CABIN NOISE LEVEL (dbA) 75 | .5 90 | 93 | | ESTIMATED PRICE \$2,700,000 | 00,000 \$3,500,000 | \$3,800,000 | **FIGURE 24.** Favorable comparisons of 19-passenger turbofan study airplane with existent 19-passenger turboprop low-density, shorthaul airliners. The explosive growth in the new, smaller regional jet market is accounted for by two principal factors. First, passenger acceptance is phenomenal. The airplanes are being used on some routes where passengers have come to expect turboprop service-service that has become increasingly unacceptable to travelers. Second, the airplanes are adequately low in total operating cost on stage lengths averaging 300 miles or greater. Although the turbofan engines on the small regional jets are all optimized for 0.80 Mach in the stratosphere, they provide reasonable seat-mile fuel burns on route stage lengths of 300 miles or more. An upshot of the new regional jet market is that airlines are withdrawing from short-stage-length commuter markets while expanding into increased-stage-length regional markets. They are, thereby, depriving an increasing number of small communities of scheduled passenger service. Twenty years ago, average low-density, shorthaul stage lengths were about 100 miles. Today, average stage lengths are approaching 200 miles, and they are increasing rapidly. As new turbofans were the enablers of the new regional jet aircraft and the expanding regional airline markets, it is reasonable to believe that additional, new mission-optimized turbofans could yield new aircraft for a revitalized, true, low-density, shorthaul market. It has been shown that it would be advantageous for the new turbofans to use the fan system designs investigated in this study. #### 6.2 REDUCED NOISE WITH EFFICIENT, LOW-COST FANS The low tip speed, low pressure ratio fans that are subject of this investigation are expected to yield engines and aircraft having much lower community noise levels than any previously available examples. On average, properly matched engines using these fans will have both core and fan jet velocities less than half those of typical executive jet and commercial airliner turbofans. Combining the eighth-power-of-velocity law (applying to jets) and the fact that the engines will be substantially lower in thrust level, the average engine exhaust signature will be about 30 dB quieter than the average executive jet turbofan engine. It will be far quieter in takeoff, sideline and 1000 foot flyover noise than any governmental regulations currently in effect or even visualized. All but the highest pressure ratio versions of the efficient, low-cost fans premised in this study will have subsonic tip relative Mach numbers. Therefore, the characteristic buzzsaw signature contribution of transonic fans will be subliminal or non-existent. With fan blade passing frequencies of 1000 hertz or less at approach thrust settings, it is expected that approach noise profiles will be about equal to the aircraft on which the engines are installed. Furthermore, on the smaller turbofans to which this fan technology is applicable, the core compressor, core turbine and fan turbine blade passing frequencies are all well above the audible range of the human ear at normal thrust settings, from flight idle to maximum. Their contributions to aircraft noise will be nil. A specific evaluation was made of the 500-pound thrust class turbofan using the 19-inch diameter fan subject of this study. In a comparative analysis, it was determined that the 1000-foot maximum-power flyover noise signature of a bare, unattenuated engine would be less than 65 EPNdB. This is less than the background noise level of a typical suburban general aviation airport. #### 7.0 CONCLUSIONS The conclusions that Advanced Propulsion Inc. has drawn from the results of i investigation are as follows: - 1. Conventional fan design practices and normal blade and vane aerodynam loading parameters can be used to design low-tip-speed fans for turbofan engines that are, in all respects, mission optimized for 200-to-400 knot aircraft. - 2. Low-tip-speed fan rotors and their accompanying stators can be produced fro aluminum alloys and some reinforced plastics at substantially lower cost than the titanium alloy fans that are current practice on executive jet and commercial airling turbofans. Based in the investigation results, the preferred, low-risk configurations a aluminum alloy, integrally-bladed, NC-machined (from near-net-shape forging), blis rotors. For stators, the preferred solution is aluminum alloy, precision-investment-cast integrated stator and front frame assemblies. Total fan system manufacturing cost expected to be less than one-fifth that of similar-size titanium fan systems. - 3. When produced in quantities associated with general aviation and low-densit shorthaul aircraft, the efficient, low-cost fan systems will have equal manufacturing co and will weigh about one-quarter as much as constant-speed propellers capable absorbing the same power. - 4. The first-cut preliminary design of an example fan system yielded a predicte efficiency of more than 91 percent adiabatic efficiency at 1.10 pressure ratio. It reasonable to expect that design refinement with advanced CFD methods, combine with test rig development, will yield efficiencies in the range of 92 to 93 percent. It expected this level of efficiency can be attained over the range of pressure ratios of 1.0 to 1.35 and corrected flows between 35 and 150 pounds per second. - 5. Thicker, tailored blade sections and much lower rotational speeds yie substantial structural design margins for meeting FAA certification requirements f 1-pound and 4-pound bird strikes. - 6. Similarly, robust, subsonic blade sections and lower rotational speeds yield dust and rain erosion resistance equal to or superior to conventional, high-spectitanium fans. - 7. Further structural design evaluations confirm the adequacy of low and high-cyc fatigue lives, adequacy of lightweight blade containment and potential for lightweig blade-off design solutions. - 8. Future turbofan engines using the efficient, low-cost fan system design metholand parameters used in this investigation will have lower community noise levels, by usual measuring methods, than any previous aircraft propulsion systems, by as mulas 24 to 30 EPNdB. - 9. The overall propulsive coefficient, including adiabatic efficiency, ideal propulsi efficiency and nacelle drag, of the efficient, low-cost fan system is greater than typical, installed efficiency (including additive aircraft drag) of open propellers. - 10. Future general aviation private light aircraft and low-density shorthaul airline can benefit from this fan system technology in terms of greater aircraft performant lower aircraft weights, improved fuel efficiency and much lower levels of commun noise and cabin noise/vibration. # APPENDIX A FAN STAGE AERODYNAMIC DESIGN UD0300 PROGRAM OUTPUT FILE | AMPLEASED PROPERTY AMPLEASED AMPLEASED | | 9076 7 |
--|---|---| | PROGRAM LIDOJOO - COTPRESSOR DESIGN - CONTROL SELTION
MERHINDERLIDORINDERHINDERHINDERHINDERHINDERHINDERHINDERHINDERHINDER | XSTN RSTN | \$100.5
\$100.5
\$100.5 | | TITLE . EFFICIENT LOW COST FAW RUN 17 BMC 6/25/95 | | n •o | | THE COURT CONTINUES AND TO THE CONTINUES AND | -9.0000 B.4540 | • | | THERE WILL BE AN ENEXT TO THE REMOUTANTIC SECTION NUMBER OF ARBITRARY HEAVILINE BLADEROUS = 1 | STATION 3 SPECIFIED BY 2 POINTS | . 1057
. 1058
. 1058
. 1058 | | NUMBER OF BLADE DESIGN PASSES = 1 NO ENTRY TO RECALCULATE WORK DISTRIBUTIONS WILL BE MADE | XSTN RSTN | . | | THIS OUTPUT FOR BLADE PASS NAMER 1 PROGRAM LOUXGO - VERSION 2.0 - AERODYNAMIC SECTION INTERNATIONAL PROPERTION FOR THE PROPERTIES PROPERTI | | 1 STATION 13 SPECIFIED BY 11 POINTS | | INPUT DATA
HARRINGRAHA | PECI | XSTN RSTN | | TITLE ROTOR INTERNAL STATIONS | XSTN RSTN | 1.2000 3.2500 | | | 27.0000 | 1. 2055 5. 8464 | | ERTIES SPECIFIC | _ (| ń iń · | | GAS CONSTANT 53.345 GRAVITATIONAL ACCELERATION = 32.174 | STATION S SPECIFIED BY 2 POINTS | | | JOULES EQUIVALENT - 778.161 | XSTN RSTN | 4 | | CP=CP (1) +CP (2) MT+CP (3) MTHH2+CP (4) MTHH3+CP (5) MTHH4CP (6) MTHH5 | -5.000 .3720
-6.000 B.9020 | 1, 2571 8, 8610 | | C C C C C C C C C C C C C C C C C C C | DEC | 23 | | | | UT24 UT27 | | | | | | 4 .000000E+00
5 .000000E+00 | -4,0000 1,0210
-5,0000 9,0930 | 1,784 3,9479 | | .000000€+00 | STATION 7 SPECIFIED BY 2 POINTS | | | • • | XSTN RSTN | | | • • | | | | | -4.0000 9.2470 | 1.5983 8.2331 | | • • • | CTATITAL B EDETIFIED BY 3 DOINTE | | | • • | | STATION 15 SPECIFIED BY 11 POINTS | | • • | | XSTN RSTN | | PRECISION PLOT INDICATOR = 0 HAX NAMES OF LINES/PAGE = 60 | -2, 0000 2, 2910
-3, 0000 9, 3640 | - | | • • | 200 | 2, 3912 4, 0493
2, 3545 4, 6169 | | • • | 7 10 031 170 | | | • • | | • | | • | -1.0000 2.7310
-2.0000 9.4450 | 2,1360 7,0069 2,0626 7,6232 | | FACTOR | DEC. | | | BASIC TOLERANCE | | • | | B.L. SHAPE FACTOR70000 | | STATES IN US PRESENTED ALL LANGUAGE | | | -,5000 2,7500
-,6000 4,5000 | | | PLOTTING SCALE FOR PRESSURES 1.000 | | XSTN RSTN | | | | 3.0000 3.6250
2.9841 4.1508 | | | STATION 11 SPECIFIED BY 11 POINTS | 2. 9308 4. 6993 | | WAKE TRANSFER CONSTANT | XSTN RSTN | 2.7909 5.8457 | | • | 3,000 | 2, 6003 7, 0360 | | POINTS TO BE COMPUTED | | | | NO FLOURATE SPEED FACTOR | . 1584 - 1585
1584 - 1585
1585 - 1585
1585 | | | 1 38,450 8844,000 | | STATION 17 SPECIFIED BY 2 POINTS | | ANALLIS / COMPUTING STATION GEOMETRY | . 4497 B. 1982 | . NTSX NTSX | | STATION 1 SPECIFIED BY 2 POINTS | | 4.0000 3.7480 | | XSTN RSTN | STATION 12 SPECIFIED BY 11 POINTS | | | | KSTN RSTN | | | -10.0000 B.8970 | 3,1250 | NEW | | | | • | I < 14PRINT | | | 121W | 7.2676 | -39.8407 | 9.0489 | 5.7752 | 1.0716 | 3.3105 | | | | | | | | | , | | | | | DATZI | 1704 | 3.4008 | 13.8702 | 12.3062 | -55.8341
-59.0636 | 4.0207 | | | | | | | | | | | | | DATZ! | 714F | 8
= : | |----------------------|-------------------------|---|--------------------|-------------------------|-------------|---------|----------|-------------------------|--------|---------------|-------------------|--|------------------|--------|-------|-------------------------|----------------------------|-------------|---------|-------------------------|------------------------------|-------------------------|---|---|-------------------|-----------------|----------------------|-----------------------------|--|---------------|--|---------------------|----------------|---------|------------------|----------------------------|------------------------------|----------------------|--------------|--|--|--------------------------|-----------| | | | MUNK-U,5,UK 6 ULT- DA
KHROGKIRRIKKER | 71 | 777 | 7 1 | | 7 | 7 7 | | | NUORK - 1 NLOSS - | NLITER O NUEL = 0
NDATA2 = 11 NSKIP = 1 | NPLOTS O NBLEED. | | | | | | | | | NLORK=0,5,OR 6 ONLY- DA | *************************************** | 77 | | 17 | 777 | 7 | | . 350 M AGUNA | MLITER O NDEL | NPLOTS O NBLEED | | | | | | | | | NLORK=0,5,0R 6 ONLY- DV | KATADON IMBOLINDOS KODON | | | 888 | | | 2.52234 | 1.99146 | 1.71073 | 1.45354 | 1.19631 | 1.04895 | | | MINCH = | MOLADE: 17 | #P.074 | | DATA6 | 9.
9.
9.
9. | 8.
8.
8.
8.
8. | 0000 | 8 | 800 | 8.00
8.00
8.00
8.00 | DATZS | 72.6 | 2.2065B | 1.83861 | 1.57809 | 1.19631 | .688297 | | - 70 | NCURVE 1 | NPLOT4 0 | | DATA6 | 0000 | 8
8
8
8
8
8 | 8 8
8 8 | 8.8
8.8
8.8 | 6.6
6.8 | 8 8 | _ | | 2.52234 | | 8000 | | 1 2124 | .17163 | 15185 | 13768 | 12674 | .07449 | 0.04461 | | | NOTHEN- | NOUTS - 0 | PLOT3 | | DATA2 | 000000 | 000000 | 90000 | 00000 | 90000 | 00000 | DAT24 | 10710 | 21720 | . 19668 | .18391 | 10197 | .04833 | | | -3 NEVAL - 0 | NP.COTS | | DATA2 | .00000 | 00000 | 90000
90000 | 0000
0000
0000 | 00000 | 0000 | DAT24 | | 2121 | | | ÷. 35 | DATZS | -11.6559 | -6.1274 | -1.5627 | 2.3500 | 7.1885 | 11.3813 | | n | HERE. | 2 NL22
0 NOUT2 - 1 | FL072 | 8. | DATAI | 15.327 | 15.306 | 15.296 | 15.292 | 15.292 | 15.293 | DATZS | | -5.0127
-3.6739 | -3.0031 | -1.0898
2905 | 2.3145 | 5.2692 | | | 2 | MPLOT2 | 9.1 | DATAI | 15.642 | 15.623 | 15.601
15.596 | 15.592
15.591 | 15.590 | 15.592 | DATZS | | | | 5.64
5.68
5.68 | 1.000 | DATZC | 1250 | 4.4305 | 8 8 8 | 68 | 22.52 | 87.92
50.02 | 8 | STATION 1 | NDATA = 11 | 150x | NPLOT1= | SPEED | DATAC | 000.
4260. | . 1924 | .3903 | 5918 | 7967. | 1.0000 | DAT2C | 1 | 3.8843 | 5.1285 | 6.3873 | 7.6609
B.2849 | 9.5000 | CTATION 1 | MARKINGER | N | NPLOTI: | SPEED | DATAC | 990 | . 9835
1893 | 25 W. | 898.
2882. | 2004
2104 | 2969 | DMTZC | | | | | | | | | | | | | - | | | | | | | | | | | | | | · · · · · · | | | | | | -46.9630
-46.9630 | 823 | 3872 | 113 | 7645 | | | | | | | · · · · · · | | | | | | | NDEL • 0
NSKIP • 0 | | | NOEL S | | | | NOEL S | | | | NOEL . O | | 5 | | NOEL . O | | | | | | | | | | ONLY- DATZ! | 35. | 7 9 9 | i i | | 9 7 | 4 | | | + 0 - d | NSKIP = 1
NBLEED= 0 | | | | | | | | | 0 | NLITER- O NI
NDATA2- O NI | • | • | MLITER ON | 0 | | • | • | NDATAZ= O N | | 0 | NLITER O NI | • | | • | NLITER O N | • | | | | | | | | | RK=0,5,0R 6 | | | | | | | | | -0 | NDATA2= 11 NE NPLOTS= 0 N | | | | | | | | | 0 | NCURVE- ON NBLADE- ON | 0 | | NCURVE- 0 N | 0 | | • | 00 | NPLOT4: 0 N | | • | NCURVE O N | | | • | NCURVE 0 N | • | | DATA6 | 0000 | 966
986
986 | 000 | 888 | 88 | 0000 | DATZS NAO | 52234 | 94166
194166 | 71073 | 57809
45354 | 32646
19631 | 04895
88297 | | | 0 | NBLADE- 17 N | | ATM | <u> </u> | 888 | 88 | 3 | | | 0 | NEVAL = 0 K | • | | NEVAL - O K | 00 | | | | MOUTS - 0 M | | _ | NEWAL - O NO | | | | NEWL - O NO | | | DATA2 I | | 00000 | 00000 | 00000 | 000 | 00000 | DAT24 I | N | 02609 2. | i | | | - | | | m 0 | NOUTS - O NE
NPLOTS- O NE | | 7 | - | 00000 | 0000 | | | | 0 | NC - 0N | • | • | ML2
NL2 | 00 | | • | 00 | MOUTZ - ON | | | M2 - 0 N | 0 | | • | 0- | NPLOT2= 0 N | 8 | _ | • | | | | | | DATZ3 D | | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • • | • | | • | | | ٠, | NOUTZ - 1 N | 4 | | | 18.801
18.805
18.805 | | • | | | i o | 00 | • | STATION B | | 00 | TATION 9 | · E < | | NPLOT1 - 0 NF | • | * 0 | N.I. O. M. | • | | MATA | 0 | • | SPEED . | DATAC | | | | . 5986.
. 5986. | | | DAT2C DA | 8 | 223 | | 1 22
1 23
1 24 | 23 08
23 08 | | | TATION 12 | DATA - 11-M | MOUTI - O K | - 033-5 | | · · |
86.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17 | | | | - | × z | | _ | | | | φ. | | | | | | | - | | | | | | 9 | | | | | | | | | | r un · | | | | | | | | | | - | 1 NTERP= 0 NDIMEN= 0 NTMCH= 0 NPLDT1= 0 NPLDT2= 0 | WHIRL ANGLE | 98 | | ONLOSS - O | | | | NDEL . O | | | NLOSS - 0 | KIP = 0 | | | NOEL O | | | O NLOSS = O | 0 NPLOT1= | | • | | | | | 0 | O NLITER O NE | • | | 00 | 00 | • | • | N.ITER- ON | 00 | | O MUDEK = O M | TER- 0 K | O NIMCH | TOTAL TEMPERATURE | 518.690 | | H = 0 NWORK = VE= 0 NLITER= | 4. o 4. | | - I | VE- O NE | T4- 0 NP | | H = 0 MADRK = | 200 | | • | • | 00 | | 1 0 H | ¥-0 × | | | 2 POINTS | | | 2 POINTS | | | | - O NDIMEN- | | លី | | PEN-ONTAK | O NOUTS = O NBLADE=
O NPLOTS= O NPLOT4= | | HEN= O NIMC | O NEVAL . O NOURVE. | OTS- 0 NPLC | | O NOIMEN O NYMCH | 13 - 0 KBL | | O TABLE | M. O NOTE | O NOUTS = O NBLADE:
O NPLOTS= O NPLOT4= | | O NOTHEN- O NINCH - | # - 0 KCM | | 4.0110
9.5000 | CIFIED BY | RSTN | 4. 3820
9. 5000 | CIFIED BY | RSTN | 4.7970 | 9.5000 | CIFIED BY | RSTN | 5.0080 | 9.5000 | CIFIED BY | RSTN | 5.0080 | 3 | CIFIED BY | RSTN | 5.0080 | • 2000 | STATION 24 SPECIFIED BY | RSTN | 5.0080 | TION DATA | | TOTAL PRESSURE | 14.6960 | | | 72 - 0 NOL | | 100 0 | 2 - O NEV | T2= 0 NPL | | | 200 | | | | 7 - 0 NO.
12- 0 NP. | | 10N 0 = 0 | - O A | | 5.0000
5.0000 | STATION 19 SPECIFIED BY | NEX | 6.000
6.000 | STATION 20 SPECIFIED BY | NTSX | B. 0000 | B. \$600 | STATION 21 SPECIFIED BY | NTSX | 9.000 | 9.000 | STATION 22 SPECIFIED BY | NLSX | 10.000 | 3 | STATION 23 SPECIFIED BY | NESX | 11.0000 | 11.000 | ON 24 SPE | NTSX | 12.0000 | STATION CALCULATION DATA | STATION 1 NDATA= | | | STATION 2 | ONTER | 1= 0 NPLOT2= | n
8 | ************************************** | . 0 N.2 | 1- O NPLG | 4 M | NDATA - ONTER | 0 NOUT2 | | | 0 | 1= 0 NPLOT2= | * | MINISTRA . O NTERP . | . O M.2 | | | STATIL | | | STATIC | | | | STATIL | | | | STATI | | ~• | • | STATIC | | | _ | STATI | | | STATIC | STATIC | DATAC | 900 | STATIC | NDATA
NE.1 | NPC 51 | STATION | MDATA | 7 E | Į. | STATION | E . | 5 | | | | MOST: | STATIL | MONTA | Į | | Г | 2: | | - | - 7 | n + | n • | ~ 80 • | . 0 = | : - | | 10 |) 4 K | 91 | | 0 | - | - 0 | n 4 | N 40 | - 8 | • 0 : | | , - | . 0 0 | 410 | % N 0 | | | - | | 1 M 4 | n 10 1 | - B 0 | | - | - 0 | nt | | ⊘14PR | | |--------------|---|----------------------------|-----------------|---------------|------------------|------------------|--|-------------|----------------|----------------|------------------------|------------------|------------------|--------------------|----------------------|------------------|----------------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|-------------------|------------------|--------------------|------------------|--------------|-------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|------------------|-----------------------------|-----------------------------|-----------------------------|--------------------| | | == | | - | 22 | 22 | 22 | 222 | 122 | ·
! - | . 1 | 22 | 122 | 22 | 22 | 22 | | ** | : : | ! ! | : : | ± ± : | -
• | - Ē | ដុខ | 5 5 | 2 | 2 2 2 | 51 | - | 2.2 | 222 | 22: | 222 | 222 | | 22 | 22 | 222 | 222 | := | | | 5.8992
6.5466 | | COORDINATE | .6626 | 1.9446 | 3.2237 | 3.8673
4.5083
5.1400 | 5.7646 | -COORDINATE | 0000 | 5543 | 1.8786 | | 5.0351 | | -COORDINATE | .5957 | 1.194 | 2.4230
3.0490 | 3.6817
4.3142 | 4.9338
5.5364 | 6.1314 | -coordinate | .5521 | 1.7291
2.3413 | 2.9620
3.5893 | 4.8357
5.4396 | 6.0316 | COORDINATE | 0000 | 1.0731 | 2.2648 | 5. 4986
4. 1214 | 5.3526 | COOPOINATE | 0000 | | | 1.9884
4.5754 | | | | .5730 | | XIAL COORDINATE | .6134 | .6560 | .7109 | 747.
7894
7894 | 9064 | TIM COURDINATE | 1.2000 | 1.2054 | 1.2087 | 1.2055 | 1.2111
1.2168 | 1.2384 | XIAL COORDINATE | 1.B000
1.7979 | 1.7773 | 1.7272 | 1.6576 | 1.5947 | 1.5400 | ATAL COORDINATE 1 | 2.3911
2.3538 | 2.3170
2.2562 | 2.1280 | 1.9724 | 1.8200 | XIAL COORDINATE 1 | 3.0000 | 2.9312 | 2.7859 | 2.5898
2.4756 | 2.2295 | XIAL COORDINATE 1 | 0000 | 4 4 0000 | 6.00.00
000.00
000.00 | 000.4 | 4.000 | | | B.8651 | | RADIUS A | 3.1250 | 4.4305
5.0686 | 5.7065
6.3464 | . 628.
2.628. | 8.8792 | Paniis A | 2.2500 | 3.8943 | 5.1285 | 6.3873 | 7.6609
B.2849 | 8.8939
9.5000 | RADIUS A | 3.3750 | 4.5690
5.1788 | 5.7965
6.4219 | 7.0537 | 8.3037
8.9057 | 9.5000 | RADIUS A | 4.0520 | 5.2266 | 6.4536
7.0772 | 8.3139
8.9132 | 9.5000 | RADIUS A | 3.6250 | 4.6953
5.2804 | 5.8778
6.4842 | 7.7081 | 8.9145
9.5000 | RADIUS A | 3.7480 | 4.8532
5.4175 | 5.9897
6.5680 | 7.7364 | 9.5000 | | 1 of 32 | 2= | | STREAM, INE | N | n + | n • | ~ @ • | `2: | | - | . ~ . | o ← R | • • | ₩ \$ | 9 = | STREAM, INE | - 10 | n 4 | PO 40 | ~ 80 | • 2 : | = | STREAM INE | · n n | 4 10 | % | • • 9 | = | STREAM, INE | | 4 M 4 | 80 -0 1 | ~ 80 € | `2: | STREAM, INE | 6 | 1 M 4 | 10 10 11 | . m • č | == | | Page | == | 1 | STATION | 22 | 22 | 22 | 222 | 222 | STATION | | 121 | 222 | 22 | 22 | 22 | STATION | ** | ** | : : | 11 | 11: | ± | STATION | : 12 15 | 25 25 | 2 2 5 | i ii ii | ž. | STATION | 23 | 222 | 22: | 22: | 2 2 2 | STATION | 22 | :22 | 222 | 222 | 2.5 | | | | - | | | 84 | | 10 · 01 | | | | | - 00 5 | | | | | | | A. M | | 9 1 | | | | | n + 1 | | | | | | | | | | | | | | | | | w r | 10 K |
 | - | •• | •• | ••• | | • • • | | | | | | ~ ~ | ~~ | - | | œ œ | | | | | - | • • | • • • | | | •• | | 22 | 22 | 223 | 222 | 22 | _ | === | ==: | :::: | := | | | 80 C | | . * | MATE | 0 in | n w | n m | . m . | | . 1 | | o + c | 6 | | n o | - ^ | MATE | | • 0 | ~ ~ | + 10 : | 0 6 | nn | MATE | 0.6 | 80 to 1 | • • • | . ~ = | ۰ | MATE | ٥. | 5 1 | n m : | 9 6 . M | | ¥ E | | . | | | | | 5.946 | 7.2751 | 98 | L-000001 | 8 E | 3.271 | 4.0133 | 760.9 | 130 | 200-1 | | 1.132 | 2.762 | 4.1969 | 6.23 | 7.2 | L-C008011 | 8. | 228.1 | 3.014 | 4.3915 | 5.074 | 7.143 | T-C00401 | 8.9 | 2.0435 | 3,39 | 5.413 | 6.095 | L-COORDIN | 8.E | 2.15 | 2 K 1 K | | 6.0917 | L-COORDI | 8.3 | | 3.3038 | | | | -5.6924 | -5.8471 | • .000 | AL COORDINATE | | | -4.4934
-4.5808 | | | | | | | -3.5492
-3.6398 | | | 4. COORDINATE | | | | -2.5189
-2.6148 | | | N. COORDINATE | | -1.200 | | | | N. COORDINATE | | | | 6740 | 5723 | N. COORDINATE | .0000 | . 1023
. 1025 | 2852 | . 4550
. 4550 | | | 6.2783 | 7.5976 | B. 9020 | RADIUS AXI | 1.0210 | 3.4735
4.2677 | 5.0038
5.7089 | 7.0721 | 8.4151 | PAULIS AYT | | 2.7937 | 4.4094 | 5.8319
6.5185 | 7.1986
7.8770 | 8.5584
9.2470 | RADIUS AXI | 2.2910 | 3.1067 | 4.5774
5.2755 | 5.9609
6.6392 | 7.3150 | 8.6738
9.3640 | RADIUS AXI | 2.7310
3.3826 | 4.0740 | 6.0887
4.7528 | 7.4175 | 8.7604
9.4450 | PADIUS AXI | 3.5304 | 4.2022
4.8686 | 5.5298
6.1893 | 7.5085 | 8.8330
9.5000 | PADIUS AXI | 3.0000 | 4.3522
4.9903 | 25.5 | 8.2309 | | | ۰. | • 5 | := | TREAM, INE | N | n 4 | N 4 1 | ~ = • | `2: |
TDEAN 1145 | | - 00 + | • • • | • | . | 9= | TREAM. INE | - | N M | 4 10 | • | • • | 2= | TREAM. INE | - 7 | N 4 1 | n • 0 h | . 80 0- | 2= | TREATL INE | - n | n 4 | in 🕶 I | - 80 ● | .8= | TREATL INE | - 10 | n + 1 | n ~ r = | •• | | | 10 W | ın r | n un | STATION S | •• | •• | ••• | • • • | • • • | STATION S | | | | | ~~ | | STATION S | | | | • • | . . | • • | STATION S | •• | • • • | | • • • | •• | STATION SI | 22 | 22 | 22 | 225 | 222 | STATION SI | == | ==: | ===: | == | | | | | | | | | | | | | | | | | | | - | 10:23 | | | | | | | SE SE | | | | | - | (| 1 P) 4 | n • | ~ B | • 2 = | , | - | Nn | 4 N | 91 | | 2= | - | - 71 | n 4 R | | | 2= | - | - | N P | t 10 4 | ~ 6 | • 2 : | : ` | (| N M + I | o o | | | | | | | | | 7
5 | | | | | - | | | | | | - | ~ | ~~ | N N | n n | n n 1 | N N | - | nnı | nnr | nn | nn | nn | - | . * | ** | • • • | • | ** | • - | 10 | n in in i | 10 80 | | 6-25-95 | EXIT = 6.2500 | WILING EDGE | 0.0 | | | | STREAM INE AR | 7 | 8/2 | | | L-COORDINATE | .000 | 3.0237 | 5.3801 | 6.0963 | 7.4907
8.1842
8.8970 | L-COORDINATE | 0000 | 3.0941 | 3.9187 | 5.3886
6.0736 | 7.3532 | 7.7328
B. 4540 | 7 | 2.2345 | 3.9878 | 5.4200 | 6.7338 | 7.9329
B.4860 | L-COORDINATE | | 3.3216 | 4.7856
4.7856 | 6.1514
6.8034 | 7.4381 | L-COORDINATE | 0000 | 3.0191
3.0191 | 4.9567
5.2626 | | RESULTS, OUT | FRACTION OF COPPUTING STATION LENGTH AT BLADE EXIT = 6.2500 | LOSS/LOSS AT TRAILING EDGE | 9.6 | 00 | 1.0000 | | PROPORTIONS OF TOTAL FLOW BETWEEN HUB AND EACH STREAMLINE ARE TO FOLLOWS | 2 22. | | 1.0000 | | AXIAL COORDINATE | -10.0000 | -10.0000 | -10.0000
-10.0000 | -10.000 | 00000 | AXIAL COORDINATE | -9.0000 | 0000 | -9.0000 | -9.0000
-9.0000 | -9.0000
-9.0000 | -9.000 | AL COORDINATE | -8.0000
-8.0000 | ei ei e | 9000 | | | AXIAL COORDINATE | -7.0000 | -7.0000
-7.0000 | -7.0000
-7.0000 | -7.0000
-7.0000 | -7.0000 | -7.0000
AXIAL COORDINATE | -5.0000 | 5.241
5.45
145
145 | -5.5306
-5.6128 | | 2 | STATION LEN | | | | | | FLOV BETWEEN | 3 3 | | .7168 .8532 | COORDINATES | RADIUS AXI | | | | | 7.4907
B.1842
B.8970 | RADIUS AXI | | 2.1102 | 3.9187 | 5.3886
6.0736 | 6.7300 | 7.9326
B.4540 | RADIUS AXIAL | 2.2345 | 3.1982
3.9878
| 5.4200 | 6.7338
7.3488 | 7.9329
8.4860 | RADIUS AXIA | _ | | | | 7.4381
8.0591 | B.6730
PADIUS AXIV | | . 5290
. 3706
. 1637 | | | | OF COMPUTING | OF HERIDIONAL CHORD | 986 | 9 5 | 1.0000 | | NS OF TOTAL | - 8 | 3 . | 8065 | STREAMLINE COORDINATES | STREAM INE | - (| 1 n + | n 40 | ~ 8 | • 2 = | STREAMLINE | - | n n | 4 10 | • ^ | 80 • (| 2 = | STREAM, INE | - 0 | n 4 I | n • r | . 80 4 | 2 = | STREAM INE | - | พท | 4 IV 4 | • r = | • 2: | 11
STREAMLINE | - | N N 4 | an 😻 | | | FRACTION | FRACTION (| | | | | PROPORTIO
XLLONS | STREAM, INE | | FLOW | ESTIMATED | STATION | | | | | | STATION | | 1 01 01 | n n | N N | n n i | N 70 | STATION 8 | nn | nnı | 1 H H | nn | nn | STATION | | •• | * * • | • • • | ** | STATION S | | 10 to 10 | 10 10 | | | | | | | | | • | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | O MELEDIO | | | O NEGS O | O MSKIP . | | | WAKE DISTRIBUTION FACTOR | 0.1 | 88: | 88. | 88 | 88 | 99. | 88. | 98. | 083 | .00 | 0001 | 98. | 88. | 980 | 88:1 | | E TYPE 1 | | | | | | | | | | | | E TYPE 2 | | | | | | | | | | | | | 28 1 | | | |---------------------|---------------------------------|------------|-------------|--------------------------|------------|-------------|--------------------------|-----------|----------------------------|---------------|-------|---------|----------|------------|---|---------|---------------|---|-----------|-----------------|-------------------------|---------|---------|---------------------------|--------------------|-------------|---------|---------------------|------|-------------|------------|-----------------------------|-----------|------------------|---------------|---------------|----------------|-----------|------------------|---|----------|---------------|---|------------------|----------------|--------------------|--|-----------|--------------------|----------------------|-----------| | O NPLOTS- | | | O NLITER | O NIDATA2:
O MPI OTS: | FOR BLADE | | TERS
TIP | 6 | 0000 | 866 | 00600 | .00900 | 08600 | .01100 | .02040 | .02700 | FOR BLADE | | TERS | | 9690
9690 | 00750 | 00600 | .01150 | .01320 | 02020 | 02470 | .02940 | .04170 | BLADE CLASS | | | | O NPLOTS= O NPLOT4= | | | O NEWER | | | | E BLOCKAGE | 0000 | 800 | 0000
0000 | 9000 | 900 | 00000 | 888 | 888 | 0000 | 9000 | 00000 | 0000 | 800 | 900 | 88 | | / DIFFUSION FACTOR CURVES | | PARAHE | | 0000 | 866 | 866 | 868 | 09600 | 01110 | .01270
.01520 | .02450 | FACTOR CURVES | | PARAME | 2 | 003
04
04
04
04
04
04
04 | .00450 | 00900 | 06800 | .01020
.01200 | 01450 | 2128 | .02640
.03180 | 0.00 | CURVES FOR 1 | LOCATIONS | | | | | | O METATOR O | 5505 | | 5 | KAGE WAKE | | | | | | | | ۰. | | | | | | | | | FFUSION FA | 2 | . o s s | | 88 | 866 | 0000 | 966 | 960 | 01010. | .01270 | .02450 | | GIVEN) | S S O T | 2 | 6.00
5.00
5.00
5.00 | 00750 | 9666 | 01150 | .01320
.01500 | 02020 | 02420 | .02940
.03480 | 8180 | DISTRIBUTION | 1 PADIAL | | | NPLOT2 | | | O NTERP | MOUT2 = | | 5
5
5 | WALL BLOCKAGE | 0000 | 00300 | 9.9.
M 28. | .0075 | 0.00 | 0120 | 0.150 | 5.75
5.05
5.05
5.05
5.05
5.05
5.05
5.0 | 0225 | 0.00 | .0.225
22.25 | 0222 | 02750 | .02750 | 0273 | | ETER / DIY | TORS GIVE | SION | . 8 | 88 | 5 6 | 8 S | 0,1 | , Q (| 500 | 930 | .650
.700 | ETER / DII | TORS GIVE | NOIS | ŝ | 88 | 001 | 281 | RRI | 8 8
9 9 | 05
08
08 | 200 | 0 00
00 | 8 | SS - | GIVEN AT | | | MPLOT1= 0 | STATION 24 | MANAGEMENT | MENTA | - 170M | | | STATION | *** | n n | 4 W | •• 1 | ~ = | • ; | 2 = | 2: | : 1: | e 91 | 7.5 | 2 2 | 8 7 | ដ | 3 % | | LOSS PARAMETER | (15 D-FA | DIFFUSION | | • | •• | • | • | • | •• | • | •• | AWAMA SSU I | (15 D-FACTORS | DIFFUSION | Ē | • | • | • | • | •• | •• | . • | •• | • | FRACTIONAL. | 6 POINTS GIVEN | | | | | | | | | | | | ••• | | | | | • | | | | | | | | • | 0000 | 0000 | 0000 | 00000 | 0000 | 0000 | 0000 | | | | | | | | | | | | | | | | | | ••• | | | • | • | | | | | | 0 0 | 0 NSKIP | • | | 0 | O NOEL | • | | | 0 | O NSKIP | 0 | | 4 N US | O NOEL | ONBLEE | 8 | | - | | | | . 39600 | | | | DATA11 | 000 | 88 | 88 | 88 | 00000 | 88 | | | | | • | | 0 | | | 0 | ONSKIP | • | | O N. DSS | 0 | | | | | | O NADRK | O NIDATAZ- | | | O NUORK | O MLITER.
O NDATA2. | O MPLOTS | | | O NIJORK | 27 NDATA2= | O NPLOTS | | O NUORK | O NILITER | O MPLOTS | | ž | - | ۸. | | | 00000 1.47 | | | - | _ | ٠ | • • | • | • | • | • | | | | | , whose | O NLITER- | O MENLOTS | | | O MUDRIX | O MLITER-
O NDATA2- | O NPLOTS | | O MUDEK | | | | | | | NTMCH - | MBLADE. | | | NETACH . | O NELADE | NPLOT4 | | | FACE | | į | | MACH | MCURVE- | MP-COTA- | LE (NUORK=7) | 700 | - | • | • • | • • | 8000 | • • | • • | _ | N9 DATA10 | • | • | | | 00000 . 00000 | • | | | | | - nJohan | NCURVE | MPLOT4 | | | MINCH . | NELADE. | NPLOT4 | | HACH | MCLRVE. | | | | | | MOTHEN - O | NOUTS | | | - CHEN | NOUTS . | F C013 | | | MOTHEN 0 | NOUTS - 0 | MPLOTS= 0 | | MOTHEN: 3 | -I NEWAL = 2 MCIRVE = 0 NLITER = 0 NDEL = | NPLOTS- 0 | RESTAGGER ANGLE | | - | | | | 0.0000 | | | | DATAB DATA9 | | | | | 0000 | | | | | | | NEW C | MPLOTS 0 | | | NOTINEN- 0 | NEW O | NPLOTS- 0 | | NOTHEN- 0 | NEWA, . O | | į | 5
6
8
8
8
8
8 | 3 | | 0 | NOUTZ = 0 | • | | 0 | MOST2 | • | | | 0 | 10 E | • | | 0 0 0 | M.2 | PLOT2= 0 | .00 RES | | | | | | 88 | | | _ | | | | | | 00000 | | | | | | • | 000 | NPLOTZ- 0 | | | 0 | M2.
M272 • 0 | • | | NTER - 0 | | | į | 88 | 3 | STATION 17 | 0 0 | | • | TION 18 | | MOT: 0 8 | • | | TION 19 | TA - ON | | OT1= 0 N | 710N 20 | TA = 1: E | Z | T1- 0 K | | 1 | 5 | | | | 4502 | | | | _ | • | • | | • | 0.0 | • | | | 88 | 12 121 | | : 2 :
20 : | MPLOT1: 0 N | | T10N 22 | TA = 0 K | 2 2
0 0
1 1 | N 0 -110 | 710N 23 | MONTA - O K | | | - | | | STA | 9: | | £ | STA | 9 | <u> </u> | 3 | | ST2 | ğ | <u> </u> | Ē | STA | | 2 | 33 | 8 | | Ē | ė, | 9.4. | vi vi | 4.5 | • | | o | DAT | ē. | • • | vi vi | * 5 | 4. | . | | - | | Ė | | | | - | AT I | 9 | <u> </u> | 1 | STA | | 3 | | 33.3693 | 40.3329 | 50.2746 | -54.1917 | 60.5740 | | | | | | | | | | | | | | | | DATZI | | 14.8815 | -2.6276 | 28.8282 | 37.5611
44.1768 | -49.2442 | 56.7688 | 59.456 | | | | N = | • | | - | | | | | | | j | 12140 | 70. SB76 | 9.6098 | 23.9870 | 42.0930 | 47.7344 | 52.0029 | -57.8722
-58.6362 | | | • | • | | • | • | | | 380 | | NSK IP | | | | | | | | | | | | | | | • | • • | • | | • | | | MLOSS . | NSKIP = | WBLEED* | | | | | | | | | | | | | • | • | • | • | • • | | | | | | | | | | NATION . | N.ITER- 0 | NDATA2= 11
NPLOTS= 0 | | | | | | | | | | | LIDEK=0.5.0R | ВВИКВВИВОВИНЕНИЯ | | | | | | | | | | NAORK - 1 | MLITER- 0
NDATA2- 11 | NPLOTS= 0 | | | | | | | | | 1 | NAJORK-0,5,0R 6 ONLY
DESINDENDERINDENDEN | | | | | | | | | | 1.85861 | 1.71073 | 1.45354 | 1.32646 | 1.04895 | 8 | | - FLORE | NCURVE- | NBLADE: 17
NPLOT4: 0 | | | DATA6 | 9000 | 88 | 0000 | 88 | 8 8 | 8 | 88 | DATZS | _ | | | 1.83861 | | 1.45354 | 1.19631 | 1.04895
.88297 | | | NEWCH . | NCURVE 17 | MPLOT4 | | DATA6 | 000 | 88 | 8 8 | 8
8
8
8 | 900 | 88 | | DAT25 | 22.24 | 2.20638 | 1.99146
1.63861 | 1.71073 | 1.45354 | 1.19631 | 1.04895 | | | 18798 | 1906
1 | .17290 | 15250 | .05651 | R | | 7 101 | NEVAL - 0 | 1 NOUTS = 0
0 NPLOTS= 0 | | | DATA2 | .000000 | 00000 | .000000 | 900 | 9000 | 0000 | 8000 | DAT24 | i | 16918 | 140% | 12516 | 12252 | 12136 | .07380 | .04304 | | | NOTIFEN 3 | -5 NEVAL = 1
1 NOUT3 = 0 | NPLOTS- 0 | | DATA2 | 000990. | 000950 | .039000 | .025000 | 00610 | 02,000 | .056000 | DA124 | 19660 | .02067 | .01913
.01849 | 01864 | B2810. | .01853
.01891 | .01 654 | | | .5299 | 8134 | -1.8159 | -1.9514 | -2.2331 | 2:00: | | MTEDO . | Z Z | NOUT2 -
NPLOT2: | 9.1 | | DATAI | 15.958 | 15.932 | 15.903 | 15.891 | 15.889 | 15.889 | 15.891 | DATZX | | 20.0195 | 16.0619 | 6.3990 | 2.2058 | -2.6944 | -5.4790 | -9.3492
-11.9606 | | • | TERP - |
§ç | NPLOT2= | 1.0 | DATAL | 16.273 | 16.219 | 16.205 | 16.190 | 16.186 | 16.188 | 16.190 | DATZS | 1961 | 32.2080 | 22.1990
14.4257 | 6.8627 | -2.9501 | -6.3959
-9.4879 | -16.5031
-20.6508 | | | | | | 7.6852 | | | FATION 15 | HAMMAN TAL | | NOUTI - O | SPEED - | | DATAC | 0000 | 1864 | .2834 | 4828 | .5845
.794 | 7908 | 0000 | DAT2C | 1 | 000 | 828 | 62BS
2266 | 45.14 | 7.0772 | 3139 | 9132
5000 | | TATION 14 | NDATA • 11 | - 5
- 5
- 5 | PLOT1 - | SPEED . | DATAC | 0000 | .1829 | 27.8 | .4785
2015 | 6189 | 8939 | 88 | DATZC | | | | | | | 8.9145
9.5000 | | | | | IC/1 APRINT |
--|--|---| | STATION
LEW MGLE
.000
.000
.000
.000 | 9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000 | .074812
.074813
.07380
.07380
.07380
.073813
.073813 | | 9.82
9.82
MAGLE
000
000
000
135
146
146
168 | 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | 514.11.00 514.130 60 510.146 60 510.146 60 510.146 60 510.146 60 509.432 60 509.432 60 509.432 | | 윤결 |
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217
101217 | 518.690
518.690
518.690
518.690
518.690
518.690 | | 2 5 | | 14.2486
14.2486
13.9025
13.8618
13.8628
13.8638
13.7339 | | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | | | 1-P01147 CG 1-P0147 CG 1-P01147 CG 1-P01147 CG 1-P01147 CG 1-P01147 CG 1-P0114 | 10.0000 1 | | | 7.9326
B.4540
B.4540
O000
C.0000
2.1102
3.0941
3.9941
3.9941
5.3886
6.0736 | 5 444.1988.2998.200.000 | .0000
2.2345
3.1982
3.9878
4.7214
5.4201
6.0905 | | STEA
LINE
11
12
12
13
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | | | | | _ | | | .uu4m4rme51 | i annunuu egassessesse järninuunin | | | ********* | 1 871 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 278.28
292.33
292.33
304.51
314.66
319.09
326.05
327.74 | | | 21.55 21.50 21.60 | 5. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | | 1 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 278.78.
278.78.28
27.28.29.28
27.28.39.39.39 | | 22 22 22 22 22 22 22 22 22 22 22 22 22 | | 2 88888888 | | 3427
7171
1242
1242
1242
4859
4727
5000 | DESCRIPTION PROPERTY OF THE P | • | | 86
2
4 m m 7 7 7 6 6 19 19 19 19 19 19 19 19 19 19 19 19 19 | FIGURE TERMINES TO THE TERMINE | 27.28 M | | R POINT BERNWESK PARK | 1 F.Di- | . 0000
11102
1102
19187
17186
1736 | | SCHOOL STANKE STANKE STANKE SCHOOL STANKE ST | | | | | | | | | | | | | | | | . 0000
. 0000
1.0214
1.5484
2.0878
2.0878
2.1971
3.7432
4.3347
4.103 | | 2-4481
2-9572
3-9590
3-9712
4-4920
L-COOMDINATE | | | - F | د | |
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1, | | 11.0000
11.0000
11.0000
11.0000
11.0000 | | | | | | 4.0110
4.5178
5.0324
5.5394
6.0988
6.6490
7.774
7.774
8.9213
9.5000 | A 13250
4. 73850
4. 73850
5. 7136
6. 7255
7. 72716
7. 72716
7. 72716
7. 72716
7. 72716
7. 72716
7. 72716
7. 74517
7. 74517 | 7.4761
7.9652
8.4676
8.9793
9.5000 | | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | + + + + + + + + + + + + + + + + + + + | 7
8
9
10
11
STREAM, INE | | -
- | | 22
22
22
23
24
24
31
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
32
32
32
32
32 | | | | nnnnn E | | ı | | | IK/14PRINT | |------------|---|--|--| | | 252 077702
119 07721
1019 07721
1018 07726
1018 07736
272 07777
578 07777
578 07777
578 07777
578 07777
578 07777
578 07777
578 07777
578 0777
578 077
578 077 | TOTAL 258.00 101.07.00
101.07.00 101 | TOTAL | | | | #################################### | S-
RADIAL | | | | 222.01 T E S 222.03 | 1 1 E | | | 13.9782
13.9807
13.9807
13.9807
14.0026
EMTROPY
975379
975379
975379
975379
975379
975379
975379 | 6. 58. 18. 18. 18. 18. 18. 18. 18. 18. 18. 1 | 7 P. C. | | | ### ################################## | MALTIES - 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | DESCRIPTION
HISSORISSENIS | | 33 | 257
277
277
277
277
277
277
277
277
277 | THE DESCRIPTION OF DESCRIPTI | FLOW-FIELD DE: | | 6 of | 5.0039
5.7090
7.70721
7.70721
8.4.1931
9.0930
MADIUS
MADIUS
1.02210
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721
7.70721 | MADIUS MADIUS 1. 6710 2. 7937 2. 7937 2. 7937 2. 7937 3. 6450 4. 6494 6. 5184 6. 51 | - 3 | | Page | STATE A LINE LINE LINE LINE LINE LINE LINE LINE | 1747 194 194 194 194 194 194 194 194 194 194 | STATION
RECEIPED
STREAM
LINE | | | - | n · | | | | 306.23
310.54
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
311.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50
31.50 | 975CFFT (1975) 1073435 | WEIGHT .074874 .074930 .073890 | | | 2273737575
6777777780
6777777780 | 1 | STATIC W
STATIC W
S14.300 .0
S13.145 .0
S12.111 .0 | | | 21.2
21.2
21.2
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -TEPERAT
OTAL 8
B. 690 51
B. 690 51
B. 690 51 | | | 305.02
313.14.48
313.14.48
313.19.19
306.19.19.19.19.19.19.19.19.19.19.19.19.19. | 1370 5 1120 5
1120 5 11 | STATIC T
14.2652 SI
14.1532 SI
14.0537 SI
14.0035 SI | | | .00
.00
.00
.00
.00
.00
.00
.00
.00
.00 | Pagagaaaaaaa | 10.6960
11.6960
11.6960
11.6960
11.6960
11.6960 | | | 396.23
310.47
3116.74
3116.74
311.29
311.30
311.30
311.30
5.20
5.20
5.20
5.20
5.20
5.20
5.20
5.2 | 18 WATHER WAT | MUNIBER 1
2046 14
2328 14
2538 14 | | | . | MADIUS 1. 172 M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Molus
1.0210
2.5429
3.4734
4.2678 | | | | ZH Z | F - 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | • | w w = wx w = w = | • | | 5 | | | | | 5 10:23 | 2 .07209
8 .071319
6 .071318
6 .071318
6 .071318
6 .00
6 .00 | 1714. 1714. 1714. 1715. 1716. | 101AL
178.05
284.46
290.77
300.58 | | 75.45 | 907.7%
906.28
906.38
906.38
13
13
13
14
14
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | T | 7.02.22
24.02.24
24.04
24.04 | | _ | 818.690 5018.640 5018 | 1 | C 1 T 1 E 8
AXIAL
145.36
264.38
290.18
299.56 | | PESH TS OF | 13.638+ 13.5022 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 13.3233 | F C C C C C C C C C C C C C C C C C C C | | | ä | 3.328 14.6960 3.3500 14.6960 | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | L TAKENTIAL | | | 1329 14,6960 14,6960 14,6960 13500 14,6960 13500 14,6960 13500 12,496 122,391 134,696 122,497 124,496 122,497 124,496 122,497 124,496 122,497 124,496 122,497 124,496 122,497 124,496 122,597 124,497 | 10 10 10 10 10 10 10 10 | HERIDIGNAL
178.05
264.40
290.77
300.55 | | | 7.7.7.3. 78. 17.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7 | 20000000000000000000000000000000000000 | . 3720
2.4290
3.3706
4.1637 | | | 9
11
11
LINE
LINE
2
2
2
3
4
4
4
5
6
6
6
6
6
10
11
11
11
11
11
11
11
11
11
11
11
11 | STREAT 11 12 12 13 14 15 15 15 15 15 15 15 | STREAM
LINE
1
2
3
4 | | | _ | _ | | | LPRINT | 16/14 | | | | | | | | | | _ w | | | | | _ | |---
---|----------------------------|---------------------------------------|--|----------------------------|------------------------------------|---
---|--------------------------------|--|-------------------------------|---|---|---|---|--------| | | | | 2.036 | 1.523
1.626
1.713
1.713 | INCIDENCE | | 556
488
227
765
765
157
356
356 | .073161
.073639
.07387
.07387
.07383
.07383
.07383
.07383 | 12.24 | 1.983
3.805
3.805
4.620
5.457
5.456 | STATION
LEAN ANGL
1.659 | 315.85 | 308.55 | 206.09 | TOT I | | | | | | ezze. | 297
297
601
601 | *** | | 444444444 | 509.564
510.894
510.747
510.747
510.779
510.736
510.597
510.308 | 12 E S | 523
612
749
749
749
749
749 | HLINE
ANGLE 1 | 8 8 E
8 8 E
8 8 E
8 E
8 E
8 E
8 E
8 E
8 | 8 H 3 H | 78.37 | MIAL
73 | | | | | | | 54.24
42.73
54.26
57.60 | RELATIVE
FLOW ANGLI | ROW - 17 | 8888888888 | | řnn . | 7.0 m v 4.0.4 | STRE/
SLOPE | | | | N
N | | | z = 0 | 6 H H Y R 1 | a w | 5992
6407
6812
7199 | 3652
3761
4457
4819
5195 | RELATIVE
MACH NO. | OF A BLADE
F BLADES IN R | 975379
975379
975379
975379
975379
975379
975379 | 9251 518.
9251 518.
9251 518.
9262 518.
9262 518.
9270 518.
9889 518. | 52.55
53.55
.00 | -22.20
-18.70
-25.16
-27.52
-43.17 | DIUS OF
RVATURE | 315.18
317.19
313.11 |
30.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 2002.20 | AKIA
SAIA | | | 28 | 947.
1127.
11187. | DELTA P
A-BLADE | | | | E OF A | | nnnnnnnnnnn | | 2.641
2.5330
2.6482
3.3036
3.9577 | | 8888 | 888 | 888 | 2 1 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | | | # 3 E | 4.861
4.817
2.771
1.028 | MELE | | 404.08
454.95
453.73
575.44 | RELATIVE
VELOCITY | : LEADING EDGE (
RPM. NUMBER OF | 12.54
12.54
12.54
12.54
12.54
12.54
12.54
12.54
12.54
12.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54
13.54 | 56666666666666666666666666666666666666 | , 10 10
6 10 10
10 10 10 | | 989
L | | | | LTANG | | | | 288 -1 | BLADE | 8778 | 22.22
24.24.24
24.35.31
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33
25.33 | BLADE | RE LEAD | 22.22.22.22.22.22.22.22.22.22.22.22.22. | . 2993
. 2763
. 2785
. 2786
. 2786
. 2791
. 2816
. 2852
. 2866 | . 4550
. 5730
. 7000 | . 10205
. 1025
. 1438
. 2852
. 2852 | POINT CO
X-COORD | 315.85
315.85
317.39
313.11
 308.67
308.33
309.17 | 20 50 50 50 50 50 50 50 50 50 50 50 50 50 | RIDION | | | 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - | 66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88
66.88 | RADIUS A | | 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | RADIUS B | 1S AT THE
1 8844.0 R | 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 25.55.55.55.55.55.55.55.55.55.55.55.55.5 | | | 毐 | 23 10
23 11
30 00
30 00 | | | | | | 4 4 K | ਅੱ ਲਵਿੱਚ 10 ਵ | _ | ~ m m ~ | NN44N4 | | STATION 11 1
ROTATING AT | N4480000000 | NW448000000 | | 3.6638
4.3320
4.9899
5.6438
6.2954
6.9458 | 2 | ~ 6 6 6 | 10.00 | i mi ori o | | | | 4 ~ E | 01 D 4 D | STREAM | | ~~~~~~ | STREAM | STAT | UN489V8901 | WW + RW CB CT CB CT CB CT CB CT CB CT CB CT CB - | **2= | W 4 6 4 4 4 4 6 | STREAM | • 6 = | . RU 40 L | · N M 4 | LINE | | | | | | | N W + B = 00 | • • • | 2 - 2 - | | NOV N444V0~N | | | | | | | n a n t | _ | | | 1 2 2 2 2 8
2 2 2 2 8 | 86 \$; | £ 781 | .073787
.073780
.073780
.07380
.073870 | | | -3.242
-3.350
-3.350
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1.425
-1 | 228.33
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
201.00
20 | | 282
282
282
282
282
282
283
283
283
283 | 18.22 | E
 .073940
.074020
.074126 | 0.00 | .0.
28.70 | | | | 14 4 K B B K | ni vi ki k | ¥ = 2' | \$ 12 × 12 × 12 × 12 × 12 × 12 × 12 × 12 | 1 1 1 1 1 1 1 1 1 1 | STATIC
STATIC | 25.54
25.54
25.54
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55 | 56.67
56.67
56.67
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69
56.69 | | 444444 | ø M -i i | ž Ť | 511.727
511.948
512.241 | 511.430 | | | | | 888888 | 388 | 를
교
교
8
8
8
8 | | 888 | TEMPER/
TOTAL
18.690 | 420man4wu- | | | 888888 | 8888 | PLOE
NGIE | 8 6 8 | 888 | 888 | | | | 9753.79
9753.79
9753.79
9753.79 | | | 9748 511
9782 511
9782 511
9818 511
9981 511 | | 10 (| -19.61
-217.79
-202.66
-541.92
-201.51
-10.43
-72.50
-46.59 | 221.2
22.22.2
22.23.2
22.23.2
22.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
23.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2
2.23.2 | | 975379
975379
975379
975379
975379 | | | 14.0168 51
14.0380 51
14.0661 51 | 555 | 7 E E | ; | | 3 | | | | 200000 | 1111 | SSURES
STATE | 7817
1521
17812
1782
1028
1028
1028
1028
1028
1028
1028
10 | 8888888888 | 8 8
8 | | | | | | | | | | | 122 |
ALPIES
STATIC
123.44
122.652 | : : : : : : : : : : : : : : : : : : : | 777 | 14.6% | -00044840 | | DESCRIPTION
Remonement | 122.755
122.755
122.756
122.868
122.868 | 2222
2222 | ALP1ES-
STATI
122.04 | 14.6960 | 7.7. | 7 7 7 | 2 | | 6 | 27.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. | \$ \$ \$ \$ | 2.2.2.
3.4.4. | | 2693 | NUMBER
2054 | . 5440
. 5825
. 5218
. 6218
. 6574
. 6886
. 6786
. 6786
. 5723 | 228.35
298.47
298.22
298.24
298.24
297.54
295.73
295.73
295.73
295.73
295.73 | -FTELD D | 124.46
124.46
124.46
124.46
124.46 | | | .2609
.2567
.2510 | 2,26,2 | 2667 | 1/07: | | Š | 1000
1000
1000
1000
1000
1000 | | | 52277
1892
1892
5085
5085
5000 | 2022
2022
8685 | | 3.5305
4.2022
4.8685
6.1892
6.1892
7.5085
8.1697
9.5000 | 7500
5305
2022
2022
8685
5297
1892
5085
5085
5000 | F.09 | 0887
7528
4176
0858
7604
1450 | | | 2654
4450 | 7828 | 122 | 9705 | | 1 | */8*0= | 4 4 10. | E 3.7. | n 4 7 2 4 0 −
n 4 4 1 2 2 2 4 | N N 4 : | E 31 | N | ~ UN 4 N 4 V M 6 O ~ | TION 10
KKROOKKOE | 4 4 K B B B | WW 4 F | E 34 | | | , 4 m | r
R | | ŧ | | | STR | | | STR | | | STA | | | STR | | | | | | SPECIFIC | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | NTION
ANGLE
471 | 28.5.2.4.4.4.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 5 5 5
6 2 5 | 74F. | | .073863
.073853
.073853
.073856
.073856
.074031 | ECIFIC
FIGHT
73650 | ************************************** | \$888 | ATION
ANGLE
047 | 288.68
284.02
277.88 | 12.2 | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | - | | - E | *** | . | E CEAN | | | - | -1.500
-1.500
-2.153
-2.313
-2.313 | พงทุสทุสท 🕏 🚉 | | *** | ~ ~ ~ ~ | KE ST | | | | | | ERATURES- | 7.074
6.190
5.429
4.717
1.032 | 10.1 | TEAHL1)
PE ANG
12.963
15.064 | 22.23.23.23
22.23.23.23.23
23.23.23.23.23.23 | 7.8 | RADIA
78.4 | | | 8 | 7.14
6.548
6.151
8.192
8.652 | 16.009
11.764
147.8 | TREAM. II | 28.52 | N H | 47.9 | 8 | | | | | | 292.68
293.12
291.13
291.13
288.30
277.22 | 781 | 1 T I E
IAL
3.76 | 8888888 | | TEMP
TOTAL
518.690 | 564285 | 28.82 | 3. OF 51. | 287.16
282.60
276.53 | 8.2.5 | 7 % F | : | | RES | .335.92
-148.43
-22.62
-37.33
-28.33 | | | | | 0 | 975379
975379
975379
975379 | 13.9963
13.994
13.994
14.0048
14.0195
14.0685
ENTROPY
.975379 | | 6652.40
-172.07
-79.74
-50.04
-35.89 | 55 E E E | RAD TUR
CURVAL | ÄKK | នៃនិ | 8 18 18 | Í | | PRESSURES | 3.3948
4.0662
4.7383
5.4138
6.0959
6.7881 | 1.3579
2.0435
2.7215 | 0000 | 8888888 | 888 | WGENTIA | | | PRESSUR
FAL 5 | 3.7065
4.3916
5.0740
5.7577
6.4463
7.1433 | .8239
1.5831
2.3093 | .0000 | 888 | 888 | 888 | 3 | | | | | ë | 5 | 252 | ONAL 16 | 5.9410 124.486 122.757
5.9410 124.486 122.787
7.1151 124.486 122.821
8.6738 124.486 122.874
9.2640 124.486 122.874
9.104-FIELD DESCRIPTION | | | | | ğ | 2 2 E | ដូខ្លួ | 8 KJ 8 | | | | -1.5001
-1.5990
-1.6980
-1.7976
-1.8980
-2.0000 | | ÷ | 295.73
295.37
292.44
289.28
284.65 | | | 124.48
124.48
124.48
124.48
124.48
124.48 | ! Þ.Ž | | -2.5189
-2.6148
-2.7103
-2.8060
-2.9024
-3.0000 | 4444
4444 | SH-P01NT
X-C00 | 288.68
284.02
277.88 | | | | | RADIUS | 6.0887
6.7528
7.4176
8.0858
8.7604
9.4450 | . 7522
. 428 | ADTUS
. 7310
. 3826 | 5.4228
6.0887
6.7528
7.4176
8.0858
8.7604
9.4450 | 3.3826
4.0741
4.7522 | RADIUS
2.7310 | | 5.2756
5.9610
6.6393
7.3151
7.9920
8.6738
9.3640
RADIUS | RADIUS
2.2910 | 5.9610
6.6393
7.3151
7.9920
8.6738
9.3640 | 5.1068
1.8585
1.5775 | ADIUS | 7.9920
B.6738
9.3640 | 5.9610 | 3.8585
4.5775 | 2.70 | | | ~~~ | 448 | STREAM -
LINE R
1 2 | ₽ 4 ∨ E • 5 I | | STREAM
LINE
1 | 5
7
7
9
10
11
11
STATION | = | STREAM
LINE | | .,,, • | STREAM - | I 6 /14F | RINT | |---------------|---|--------------------------------------|----------------------------|---------------------|---|-----------------------|---|------------------------|---|---|--|--|--|---|-----------------------------------|--|--|--|---|--|--|--|--|--------------------| | | ā. | IVE DEVIATION | | | 8 8 8 8 | | DIFF DELTA P
FACTOR ON O | | 0708 .0634
0731 .0683
0734 .0693
0744 .0719 | | ₹₽ | EFF ON HI
.9278 .0124
.9628 .0125
.9633 .0123 | . \$573
. \$500
. \$416
. \$122
. \$233
. \$233 | . 9245 | | | | 15.77 366.43
15.08 355.19
9.73 345.94
.00 343.40 | m m
L | | .293 -2.506
.293 -3.159
.719 -3.493
.182 -2.916 | -2.938
S- SPECIFIC | STATIC WEIGHT
511.446 .073690
512.972 .074247 | .074924 | | - 1 | AILING EDGE OF A BLADE
F BLADES IN ROW = 17. | RELATIVE RELATIVE HACH NO. FLOW ANGL | # # P | B.A. | .5003 -48.392
.5357 -52.325
.5710 -55.888 | 74 | DELTA P LOSS DI
A-BLADE COEFF FAC | 01681 | 9408 .01658 .0
9725 .01683 .0
0238 .01688 .0 | .01677
.01628 | STATION S | RATIO
1.0409
1.0429
1.0420 | 969 | . 0124 1.0406
. 0125 1.0406
. 0126 1.0406
. 0126 1.0406 | | L O C I T I E S
L AXIAL
383.48
380.73 | 374.00
368.70
363.33
363.33 | 333.16
343.43
315.46
314.30 | RADIUS OF
CURVATURE (| -66.16
-73.45
-105.92
-119.48 | -78.88 3.866
-38.96 3.293
-21.21 2.719
-27.51 2.182 | .00
RESTEMPE | STATIC TOTAL
13.9618 528.322 1
14.1092 528.121 | 528.042
528.016 | | | OR AT THE TR | BLADE RELATIVE
SPEED VELOCITY | | | 492.94 555.56
542.12 595.17
591.22 634.71 | | BLADE LEAN DEL
ANGLE ANGLE A-F | | .000 -3.003
.000 -2.046
.000 -1.090 | | 5.269
THROUGH STA | 9278
9628
9628 | .9500
.9500
.9416 | .0406 .9245
.0406 .9163
.0406 .9097
.0407 .9101 | TELD DESCRIPTION | 4 | | 351.55 96.29
341.68 89.72
315.60 83.95
334.30 78.54 | 080
L-C
| 4 | 1.7003 5.0491
1.6677 3.6814
1.6318 4.3135
1.5947 4.9332 | 6.13 | NUMBER TOTAL (14063 15.6423 13.3843 15.6226 14 | 15.6097
15.6010 | | Page 8 of 32 | STATION 13 IS WITHIN
ROTATING AT 8844.0 P | STREAM RADIUS I | 3.2500 | 5.1284 | 6 6.3870
7 7.0242
8 7.6604 | 8.2846
9.5000 | STREAM RADIUS B | N N 4 | 5 5.1284
5 5.7550
7 7.0242 | ~ co co | 9.5000
AH RADIUS | 3.2500 1
3.8843 1 | | 7 7.0242 1.
8 7.6604 1.
9 8.2846 1.
10 8.8937 1.
11 9.5000 1. | STATION 14 FLOW-FIELD | : 22 | | 9 8.3031
10 8.9054
11 9.5000 | STREAMHESH-F
LINE RADIUS)
1 3.3750 | 2 3.9709
3 4.5694
5 5.1792
5 5.7968 | 6 6.4220
7 7.0534
8 7.6846
9 8.3031 | 9.5000
RADIUS | 3.3750 | 1792 | | | | | | | 10N 12
TA H |
063
252
253 | | | | | 7.78.
2.01.22 | 389.11
382.68
376.97
370.63 | 1.27
4.28
4.48 | ANGLE ANGLE 136 | | £ 23.23 3 | CIFIC
1940
1700 | .073876
.074028
.074157 | 4587
4814
5023 |
29
19
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | | | • | | .0316 .0324
.0395 .0393 | • • | - | | 258:
258:
258:
200: 258: | | | | | 21.98
21.98
22.26
25.57
35.57 | | PLINE
ANGLE 1
768
816 | | 4.031159
3.808250
3.299 1.297
2.251 2.242
.000 1.946 | RATURES-
STATIC
511.391 | 511.918
512.401
512.853
513.227 | 514.250
514.250
514.943
515.544 | 515.906
(PH1+GA) | 12.562
8.680
7.222
5.547 | . 10 4 4 | * * * | 2 | | | | | 1194 .00843
2257 .00820 | | | | .0061 1.0205
.0061 1.0204
.0062 1.0204 | | | 1001 | | 375.25
371.61
367.82 | | CURVATURE SLOPE MERCHANNE SLOPE 1134.48 8. | . 42.09
. 42.09
. 40.88 | 52.25
12.25
11.19
10.00 | FS
FATIC
9620 | | | 4.3654 525.215
ENTROPY FLOW
ANGLE | 975490 22.498
975486 18.412
975503 15.982
975524 14.252 | 1==9 | 2 • • | • | | | -6.129 | 77 | 7.189 | : 2 | THROUGH STA
ISENT
EFF | ¥ 12 5 1 | 9503
9503
9338 | . 916.
1016. | . 9113
DESCRIPTION | | 4 | 377.14 95.79
372.98 85.61
368.91 77.55
363.76 71.05 | | 2 8 8 7 2
8 7 . | | 1.2078 3.7744
1.2111 4.4106
1.2168 5.0348
1.2384 5.6443
1.2600 6.2510 | | 77 15.304
15.292
14 15.292
15.2936
15.2934 | | 15.2936 1
MLPIES | 22:73
12:73
12:73
12:98
13:98
13:98 | | | | | | • • | | 7.6285 .000
8.2574 .000 | • | | | 5.0681 1.0205
5.7060 1.0205
6.3460 1.0203 | | ·- à | PADTUS | ¥ | 5.1284 377
5.7550 372
6.3870 368
7.0242 363 | | ¥ × | | 7.0242 1.2
7.6604 1.2
8.2846 1.2
8.8937 1.2
9.5000 1.2 | | 5.1284 .3507
5.1284 .3507
5.7550 .3448
6.3870 .3395 | | | 3.2500 126.047
3.8843 126.014
4.5053 126.002
5.1284 126.000 | | | | | | NMT | r 10 • 0 1 | ~ = • ; | 2= | STREAM
LINE | - 4E | 3 4 RV 40 I | . | 11 PT | STREAM STREAM | LINE
1 | 7 4 1 0 4 K | 8 6 0 11 | STREAM
LINE
1 | u 4 R 4 | ~ # • 9 3 | STREAM
LINE | N M 4 M 4 | ~ ■ ◆ 9 | STREAM
LINE | W W 4-1 | o → ► Œ | • 2 = | : | | -95 10:23a | | | | | | | 22.12.4
22.12.4
22.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13.4
23.13. | E LEAN ANGLE | 28.23.25 | 3, 379
3, 379 | 5. 357
6. 824
2.7.2 | | | 58 .073876
59 .073962
91 .074070
HB .074195 | (PH1+GAITIA)
13.007 | 11.522
10.735
8.991
8.327
8.898 | 8.240
8.576
9.269 | | DEVIATION
ANGLE | 8888 | 8888 | 888 | DELTA P | 1383 | | S.OUT 6-25-95 | | | | 23 | : 8 B T | * # # # ! | 340.119 27.91
335.25 23.52
329.75 14.08
321.62 .00 | RADIUS OF STREAMLIN | -14.13 10.536
-15.31 8.579
-17.62 7.135
-21.72 4.009 | 26.31 5.282
26.31 5.282
20.68 4.861 | 19.35 4.013
15.68 2.445
.00 .000 | TEMPE
TOTAL
521.966
521.897 | 521.871
521.866
521.876
521.892 | 521.916 511.881
7 521.944 512.158
5 521.969 512.491
9 521.981 512.848
0 521.972 513.304 | PLOU
ANGLE
13.381 | 10.490
B. 909
7.045
6.428 | 5. 253
5. 253
7. 253
7. 253 | 4.780
OF A BLADE
ROW = 17. | TIVE RELATIVE
NO. FLOW ANGLE | * * * * * | .4784 -48.455
.5138 -52.265
.5505 -55.546
.5878 -58.433 | \$ \$ \$ | LOSS DIFF | | | RESULTS.OUT | 13.920 1.1462
18.850 1.3217 | 0.231 1.5525 | | TANGENTIAL
B1 42 | 65.92
55.91
7.79 | 288
282 | 28.82
28.82
28.86
28.86
28.86 | | 1.3053 | | | PRESSURES
TOTAL STATIO
15.0114 13.9940
15.0047 13.935 | | 14,9942 14,0089
14,9941 14,0327
14,9942 14,0625
14,9945 14,0959
14,9948 14,1410 | P1ES
STATIC
22.788 | 122.646 .975433
122.646 .975441
122.647 .975452
122.742 .975464
122.706 .975464 | 22.851
22.918
22.998
23.083 | ZZ.193
THE TRA!
UNIBER OF | RELATIVE RELATIVE VELOCITY MACH NO. | ±828 | 559.53
569.63
610.53
652.02 | 8 7 5 | LEAN DELTA P | | | | .2311 -61.548 13
.8653 -63.023 18 | \$
\$ | OM-FIELD
MANAGEMEN | | | | . 6285 341.33
1.2594 336.07
1.8793 330.05
1.5000 321.62 | ESH-POINT CO | 6133
00 . 6279
81 . 6560 | | | MACH
NUMBER
. 3181 | 3258 | .3092
.3041
.2985 | ENTHA
TOTAL
125.272 | 3,7872 125,255 1
4,4300 125,249 1
5,0681 125,248 1
5,7060 125,250 1
6,3460 125,250 1 | 125.260
125.267
125.273
125.273 | 000 125.273
IS WITHIN OR /
8844.0 RPH. | IUS BLADE
SPEED | 241.18
292.29
341.90 | | 57.58
25.25
25.25 | BLADE | .000 | | | \$ 01: | | 1 1 2 | LINE TARGET | · NN 4 | 80 GO | 2 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 | STREAMH
LINE RADIUS | 3 4.4300
3 4.4300
5 4.50081 | 1001 | | STREAM RADIUS
LINE 3.1250
2 3.7872 | 14 4 10 4
4 10 10 4 | 7 6.9886
8 7.6285
9 8.2594
10 8.8793
11 9.5000 | STREAM RADIUS
LINE
1 3.1250 | 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | S E | STREAM RADIUS
LINE | HON4 | . N 4 V E | • 011
110
120
120
120
120
120
120
120
120 | STREAM RADIUS | LINE
1 3.1250 | | | | - | • | I 6/1 4F | PRINT | |---|--|--
---|---------------------------------------|---|--------------------------------------|----------------------------|-------------------|-------------------------------------|-------------------------------|----------|-------------------------------|--|--------------------------|--------------------|----------------------------|---|----------------------------|---|-----------------|---|---|---------------------------------------|------------------|-----------------------
--|--|------------| | .0242
.0244
.0248
.0248 | | 107AL
484.48
430.08 | , 25 % F | 341.52
341.52
342.24 | 345.03 | STATION
-EAN ANGLE
665 | -3.698
-5.812
-6.812 | -9.012
-9.012 | -9.988
-11.181
-11.508 | | | | .077474 | | • | <u> </u> | 3 E | 937
111 | £ ± 2 | 12 K2 | | DEVIATION | ANGLE
.000 | 88 | 888 | 888 | 888 | DELTA P | | . 9229
. 9229
. 9146
. 9078 | | SADIAL
55.94
46.75 | | 5.61
1.57 | \$.8 | STREAMLINE
SLOPE ANGLE 1
9.390 | 2.5
2.5
2.25 | 3.601 | 2.292
1.067
.292 | e 8. | ħ. | | 522.465
523.418
524.101 | | | | . | i bi bi | 197 | 177 | A BLADE | | | | | | .078
.078 | 110 | | 1.0813
1.0812
1.0812
1.0813 | | 1 T I E 9 | : 8 £ 5 | : . | 5.17 | • | | 2.2 | 2 4 13 | ÷8. | | | 534.173
534.222
534.307 | | 534.729 | | | 34.86
32.370 | | | 88 | | | | | | 75.05 | 8 | | .0242
.0244
.0248
.0248 | | O S N M S | 8 2 2 2 | 1288 | គគ | RADIU
CURVA | | 38 | 4 9 8
2 4 8
4 4 4 | -156 | 25. | | 14.9950 15.0774 15.1325 | | 15.1294
ENTENEY | . 975654 | .975644
.975686 | . 975800
. 975863 | 975931 | 976074 | AILING EDGE | RELATIVE | N HOH N | 28.28 | S.Y. | 28.5 | .5166
.5627 | ELTA P | | 9226.
9226.
9078.
9090. | DESCRIPTION | . TANGENTIA
342.28
293.96 | | 5535 | 131.4 | MOS
L-COORD
.0000 | 1.073 | 2.265 | 3.4988
4.1215
4.7410 | 5.352 | TOTAL | 16.2417
16.2417
16.2198 | 16.2048
16.1954
16.1896 | 6.1863 | 6.1899 | STATIC
123.623 | 24.540 | 22.620 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 25.9%
25.875 | IT THE TRA! | 5 w | AELOCITY
348.53 | | | | 580.16
631.83
684.10 | | | | | HERIDIONA
342.88
313.94 |
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 8 2 3 3
2 2 3 3 3
3 2 3 3 3 | 315.17 | POINT COX
X-COORD
3.0000 | 2.9850
2.9312
2.8724 | 2.7859 | 2.5898
2.4756
2.3520 | 2. 2295 | NUMBER | 3852 | 3213 | 9 A | 3126 | 707.AL
28.310 | 20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 28.213 | 23.54 | 22.24 | 81 | Ėw | a F | 319.26 | 8.75
8.35
24.55 | \$ 25.5
\$ | 688.01
588.01 | BLADE. | | 6.4539 1
7.0772 1
7.7004 1
8.3134 1 | 3000
FLDE | | | 1362
1362
137
137 | | WIUS
6250 | 1366
6955
2806 | 8781
4845 | 7.0961
7.7082
8.3154 | | | | 5.2806
5.8781
5.4845 | | | | | S.8781
5.4845
1 | | | NIHIIN SI 91 | Ę | | | | | 3.9145 | | | * r m * 3 | STATION | E | m + m | e ~ co ~ | | ٤m | | | V 80 & | | _ | - N M | 40.01 | | | ş | พท | F 10 40 | ~ @ ◆ | 2= | STATION 1 | STREAM I | | เลท | 4 m 4 | o h w | • 2 = | 5 | | | | ···· | 2_ | | | 2000 | | | | ······ | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | |
A _ | | | | 549.61
STATION
LEAN ANGLI
142 | 5. 493
-3. 677
-4. 507
-5. 919 | - 1.22
- 1.22
- 1.22
- 1.22
- 1.88 | | | | 3 .076713
5 .076843 | 5 | 929 | .452
.561
.715 | 526
111
901 | 278 | 558 | | EVIATION
ANGLE | 888 | 888 | 88 | 888 | 000. | 8 | 2362 | 154
154
154
154
154
154
154 | # F | 25.2 | .1657 | 2 1 4 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | .0245 | 0240 | | .00
STREAMLINE
LOPE ANGLE
11.768 | 5.22
5.22
3.60
3.60
4.39
5.00
5.00 | 2.652
1.607
.793
.000 | ERATURES-
STATIC | | | 520.813
521.296
521.641 | | | | - 4 4 4 | | | BLADE 17. | RELATIVE D
FLOW ANGLE | 230 | | .912
501 | 7 5 8 | 850.
F1 | FACTOR | 12.15 | 27.73
27.78
25.88 | 2.2.5
8.25
8.35
8.35 | 8.6 | 6 | N 11 THE SENT OF T | | 25 | | v | <u> </u> | 84488 | TOTAL | | : <u>-:</u> - | 531.468
531.570
531.623 | 531.592
FLOW | | 31.38 | | | | ₽.5 | _ | | | | \$ 6 A | ğ | 14300 | .03688 | . 0355
2015
2015
2015 | .03374
.03382 | 0324 | e. | | 1.0839 | | | m | 118.34
5 48.48
128.31
128.31 | | STATIC | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14.7033 | 14.8007
14.8395
14.8698 | 14.8519
ENTROPY | .975600 | . 975591
. 975625
. 975667 | 975716.
97576. | 975873 | . 975935
975916 | ILING EDGE
BLADES IN | RELATIVE
MACH NO. | ¥. | 999 | 44 | .55117
.5511
.5910 | , 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | -BLADE | . 9025
0729 | 2 6 B | 1.0078 | 1.2065 | 2.1 | DELTA H | .0245
0245 | 8 8
5 8 | | 105.74
ORDS
L-COORD | . 5523
1. 1302
1. 7295
2. 3418
2. 9623 | 2.4.4.8.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | TOTAL | 15. 9321
15. 9147
15. 9030 | 15.8955
15.8908 | 15.8882
15.8889
15.8901 | 15.8911
PIES | STATIC
123.038 | 24.22.73 | 124.67B
124.793
124.892 | 25.25 | 123.13 | AT THE TRA
NUMBER OF | RELATIVE | 365.35 | 402.06
439.59 | 482.40
527.26 | 572.44
616.73
661.61 | \$ | 141 | 20.919 | 2.38
2.38
2.303 | 4 4 5 | . 44.
74. | • | | 9620 | | | X33.24
POINT CO
X-COORD
2.4000 | 2.3537
2.3537
2.2561
2.1956 | 2.1280
2.0527
1.9725
1.8968
1.8200 | NUMBER | 3817 | 3295 | 11.
11.
10.
10. | .3124
ENTHA | TOTAL
27.566 | 127.503
127.482
127.477 | 27.486
27.502
27.526 | 77.552 | 27.589
27.582 | S WITHIN OR A
BE44.0 RPH. | BLADE | 312.12 | 55.42
463.42
45.42 | 498.10
546.21 | 5.14.6
19.18. | ا | | | | 888 | | | INCET THE
PRESS
PATIO | 0.0817 | 828 | | 9.5000
RESH
ADTUS
.5000 | . 622
227
227
1263
1563 | . 3134
. 3134
. 5000 | PADIUS | 4.0522
4.6289
5.2271 | 5.8363 | 7.7004
8.3134
8.9129 | 9.5000
PADTUS | | 4.0522
4.6289
5.2271 | | | | S ₹ | RADIUS | .0522 | 5.2271
5.2271
5.8363 | 6.4539 |
8.3134
8.9129 | 9.5000 | 3 | 3.5000 | 5.2271
5.8363 | 7.072 | 1.11.4 | .5000 | | 3.5000 1 | .6289 | | STREAM - | N N 4 N ♠ | /me011 | STREAM | - N N 4 | 10.01 | | _ | Ēш | N W ◆ | W 4 V | | 2= | TION | STREAM | - 01 | N 4 RI | , o r | m • g | _ { | w | - 10 | n 4 m | *^* | • • 9 | _ | STREAM | ¥ | . n . | | | | | | | | | | | | | | - | • | | | | | | | • | | | | | | | | | | .075212
.075341
.075527
.075768 | 076025
A) | | | | - | DEVIATION | 888 | 888 | 888 | 888 | <u>د</u> | • | 1135 | 2 2 2 | 686 | 88 | ATION 14
ELTA H | N 0.0. | 200 | 8 8 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | ŀ | TOTAL
476.18 | (32.18
(03.35 | 34.35 | . T. P | | 4 5 5 5 \$ | 1460
17.5AP
12.11 | 6.752
4.474
2.781
1.316
1.360 | 77. | -2.938 | w | | | | | | H H | 8 | • • • | | • • • | • • | - | | | | 9285
9228 | | | | | | 222 | | | 528.067 515.
528.125 516.
528.195 517.
528.259 517.
528.293 518. | iñ . | 22.25.61
7.88.75
37.88.75 | 625
14.235
14.632 | 13.20 | OF A BLADE
ROW = 17. | RELATIVE
FLOW ANGLE | -5.581
-17.54 | -15.03 | -46.368
-50.691 | -58.052
-60.916 | ; | SFF FACTOR | .02305 .1208
.02099 .1199
.02061 .1483 | | | | 2 - | | • • | | 6000
8000
8000 | • • | | E | | | | | | 14.3758 52
14.4131 52
14.4659 52
14.5326 52
14.5866 52 | iñ | .975512
.975533
.97559
.975621 | | | | RELATIVE
MACH NO. | 3530 | 1 4 B | 5471 | .6187
.6187 | A P LOSS | ADE COEFF | . 9115
. 9116
. 9235
. 9235
. 9235 | | | | | | | | | | | 0 0 1 1 | SYS.0 | 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | i i i | | | | - | 221.221
222.238
222.221
22.222
23.222
24.221
25.2221 | | | AT THE TRAILING EDGE
NUMBER OF BLADES IN | | 588 | 261 | K % K | # 7 | . DELTA | E A-BLADE | | | |
 | H STATIO | * 8 2 | 8 B l | : 88
: 66 | . 9285 . 0182
. 9285 . 0183
. 9228 . 0184 | 9.9.
\$8 | PT10N | 900KIBK
V E L | NGENTIAL
285.52 | 20.24 | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20.5 | | .3426 15.5921
.3368 15.5905
.3288 15.5902
.3185 15.5907
.3100 15.5915 | | | | | 8 É | | | | 527.
37 568. | | _ | E ANGLE | 3.163
7.171
1.877 | | | | THROUGH
SS ISE | 557
P.S. | 823 |
 | 5 8 8 | 88 | DESCRIPTION | | 1.08 | n v | 132.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
135.23
13 | 983 | | | | 99 126.749
92 126.730
68 126.724
20 126.728 | | | WITH 18 | | | | 20 495.64
34 544.37
46 593.08 | | | ANGLE | 8.00
0.00
0.00
0.00 | | | | | | | | 34 1.0609
46 1.0608
31 1.0609 | | FLOW-FIELD | 9 | | | | | | 6.4220
7.0534
7.6846
8.3031
8.3031 | 9.5000
RADIUS
3.3750 | 3.9709
4.5694
5.1792
5.7968
6.4220 | 6 4 8 | 8 8
8 8 | STATION 14 IS
ROTATING AT | RADIUS | 3.57 | . r. r. | 6.4220
7.0534
7.6846 | B B 6 | . 2 | | 3.3750 3.9709 | 5.17 | 2 | 8. %
8. % | STREAM RADIUS
LINE | | 2.97
2.92 | 6.79
42.79 | 7 7.0534
B 7.6846
9 B.3031 |
 | STATION 15 F | \$ ₹ | LINE
1 3.500 | 4 4
5 6 5 6 | 5.8363 | . 2.0 | | · • • • • • • • | 11
STREAM
LINE
1 | N N T 10 V | | | 22 | STREAM | | | * ~ E | | STREAM | LI K | - N N | | | | 2 | F | | | | | = | | | | | | | _ | | | | | | | | | | | | | | | | | I&14PR | INT | |---------------|---|--|--
--|-----------------------------|--------------------------|-----------------------|--|--|-----------------------------------|--------------------------|--|---|--|---
---|---|-------------| | 8. | 8888 | ₽ z o o o o o o | | 16.039
12.733
10.131
10.131
8.016
6.260
6.260
4.781
3.524
2.449 | 524
718
000 | | INCIDENCE
ANGLE | 8888 | 8888 | 888 | | | | | 101A
35.55
35.35
3.55 | 351.00
351.00
35.00
35.00 | 746.34
746.32
746.32 | STATION | | 4.781 | 2.5.2.
2.5.4.5.
2.4.5.5. | : THE STATIC STA | 22222 | 記
117
117
117
117
117
117
117
117
117
11 | £ 22 & | • 27. | RELATIVE I | 38.711
36.369
34.300 | 20.478
27.276
25.873 | 23.265
21.946 | | | | | E S
RADIAL
72.96
60.03 | 2 2 2 E | 7.49
7.49
7.53
7.53 | STREAM INE | | -210.47 | -429.57
-1002.89
-2743.54
-7617.90 | | 44444 | ENTROPY F. AND 1975654 34. 1975644 34. 1975646 34. 1975646 34. 1975739 32. 1975931 27. 1975931 27. 1975934 25. 1975946 25. 197 | | - | RELATIVE R | . 3526
. 3526 | | | DELTA P
A-BLADE | 7936
7568
7305
7102
6941 | 25.5.5.68
25.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | ž | . 0 C. 1 T I
AXIAL
348.70
353.50 | nuy
skr | 74.75
74.75
74.75
74.75 | RADTUS OF | | 8249 | 2.8899
3.4360
3.9907
4.5520 | | 22225 | STATIC
STATIC
124.217 .9
124.863 .9
125.203 .9
125.279 .9
125.422 .9
125.567 .9 | | 9 5
8 8 | RELATIVE F | 452.75
428.20
409.19
394.55 | 383.32
374.57
362.79 | 354.69
351.70 | LEAN DEL'I
ANGLE A-BI | 88888 | | 21 | L TANGENTIAL | 8888 | 8888 | SOMO | | %
000.3 | 90000 | MUNER
NAME
NAME
13660
13660
1356
13423
1343 | . 3280
. 3231
. 3192
. 3160
. 3133 | | 222 | S - | BLADE | 8888 | | • • • | BLADE | 88888 | | .000
04-F1ELD | | | *****
***** | SH-POINT CO | | 7 . | 7 7.2719
8 7.8180
9 8.3727
10 8.9340 | E | 7 7.2719
8 7.8180
9 8.3727
10 8.9340
11 9.5000 | STREAM RADIUS 1 1.3820 2 2.3828 3 5.2388 4 5.7140 4 5.7140 7 7.2719 8 7.8180 | ∞ ∞ ◆ |
19 15
IG AT | STREAM RADIUS
LINE | 1 4.3820
2 4.7890
3 5.2358
4 5.7140 | 5 6.2162
6 6.7369
7 7.2719
8 7.8180 | | STREAM RADIUS
LINE | 1 4.3820
2 4.7890
3 5.2358
4 5.7140
5 6.2162 | 4 r r m c | 7. % | § 4, n, n | i si vi vi r | 8 7.9175
9 8.4367
10 8.9650
11 9.5000 | REAT | | Pa | | | | E 7 | | S S | <u>8</u> | | | | E.J | | | SE SE | S | | | ES | | | | 107A.
426.59
408.78
394.33
372.56
364.97 | 55.04
50.05
50.05
77.73
8.44
8.45
8.45
8.45
8.45
8.45
8.45
8.45 | STATION | 888 | ECIFIC EIGHT 76468 76419 | 77086 | .0777615
.077717
.077796 | 77925 | | | | | 01AL 1
52.75
28.20 | 394.55
34.55
374.57
367.79 | 51.70 | .000
.000
.000 | 8 | | 82. | | RADIAL T 188.55 4 45.12 3 3 26.12 3 3 26.12 3 3 26.12 3 3 26.12 3 3 3 26.13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 9889 9 | STREALLINE ST
SLOPE ANGLE LEAN
13.7845
13.783
10.819
8.421
6.450
4.815
2.330 | | ₽ <u> </u> | 1283 | 523.725
523.726
524.118
524.539 | 24.701
24.851
(PHI+GA) | 222 | E 4 | 2.455
2.330
1.407
649 | | ₹ 2 8 4 | 27.36
27.36
27.36
13.93 | 888 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9 | | 074 24.215 | | C 1 T 1 E S
AXIAL
280.08
298.81
307.42
311.55
314.75 | 315.65
316.51
317.37
318.21
318.85 | CLRWATURE SLOP
10.71 1
10.71 1
21.39 1
44.01 1
85.99 1
129.08 1
159.08 1
159.08 1 | 888 | 1 2 2 2 | 200 | 534.307
77 534.433
78 534.573
78 534.573 | [6 [6] | | | 331 28.267
350 28.662
374 23.791
22.403 | | C 1 T 1 E S
AXIAL
339.53
336.32 | 220.15
227.09
226.28 | 12:25
12:25
12:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25
13:25 | CLRWATURE SLOPE
-10.32 16.
-18.35 12.
-33.26 10. | | | 1.002 .976074 | - | MACENTAL DO 239, 30 216, 82 1982 1982 1982 1982 1982 1982 1982 1 | 170.03
159.06
140.23
11.14 | L-COORD CU
.0000
.5070
1.0217
1.5488
2.0882
2.6384
3.1974 | | g ~~ | | 16.18% 15.040
16.18% 15.040
16.18% 15.077
16.18% 15.1048
16.1871 15.1273 | | 7110
876
897 | 826 | .689 975931
788 975994
870 976050
928 976074 | N0171 | ANGENTIAL 283.15 253.92 | 210.97
194.54
180.47
168.55 | | 10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | | | 128.344 126. | 8 5 | 1681 DI ONAL 1 293.75 307.67 314.94 315.85 315.86 315.86 315.86 315.86 | | # 101MT COOK
10000
10000
10000
10000
10000
10000
10000
10000 | s. 0000
s. 0000
0000 | | | 1233
1230
1230
1230
1330
1330
1330
1330 | S | | |
28.24
28.27
28.27
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
28.24
26
26
26
26
26
26
26
26
26
26
26
26
26 | 131 | SS3. 28
354. 79 | 25.02
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03
25.03 | 25.85
226.21 | 2.000
2.000
2.000
2.000
2.000 | 6.000 | | 8.9113 | M _ | * * * * * * * * * * * * * * * * * * * | V V B B V | # HESH
RADIUS
0110
5180
5287
5289
6.0992
6.6994
7.7084 | ∞ ∞ • | E 44 | 5.0327 | 6.67%
7.2084
7.774
8.3458 | 8.9213
9.5000
H RADIUS | 4.0110 | | 7.7084
7.774
8.3458
8.9213 | 3 1 | 4.3820
4.7890 | 5.7140
6.2162
6.7369
7.2719 | | . RADIUS
4.7890
4.7890
5.238 | 6.2162 | | 2 | 11
STAT | STREAT
LINE
2 2 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | VB.011 | STRE
LINE
M - 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 | *22 | STREAM
LINE
1 | 1 W 4 F | 0 4 F E 6 | 10
11
STRE | - 61
- 61 | 3 4 R) 4 | , r m + 2 = | STATI | STRE/
LINE |) 4 N 4 V B (| -2= | | r so | | 10:23a | | | * - * * * * * * * * * * * * * * * * * * | | | عاتات.
ا | 383 | 18898 | £ 85 90 | <u> </u> | 2888 | | -
E13 | 25.23 | 2828 | | | | | 55 | • • | 227
3520
367
370
370
370
370
370
370
370
37 | _ | 9560 0229
9311 0220
9311 0301
9220 0304
9135 0306
9038 0310 | | 1 | | 22.03 356.29
14.71 356.80
8.69 347.10
4.22 344.55 | .28 342
.00 339.
LINE STAT | NGLE LEAN &
24 .00 | 26#3
5665 | 88.88888888888888888888888888888888888 | URES- SPECI
TATIC WEI
B. 922 . 076 | 521.573 .077203
521.573 .077203
522.474 .077478
523.186 .077672 | | 10.874
10.721 | 7.283
7.507
5.748
2.755 | 780 | | - 1 | • | .04121 .4227
.04134 .0456
.04218 .3449
.04218 .3449
.04123 .3162
.04152 .267
.04057 .2667
.03342 .2486 | -
- | 10120 | | w — | | 301.57 30
303.63 22
305.72 14
307.99 8 | .45
.45
OF STREAM | URE SLOPE A
57 10.8
46 10.7 | 7.5 | 14 2.755
14 2.755
17 1.616
36 2.755 | TEMPERATI
TOTAL S
534,627 511 | 534.197 52
534.173 52
534.222 52
534.307 52 | 25235
28235
38333 | - | ###################################### | 28.418 | | RESULTS.OUT | | . 3701
. 3754
. 3888
. 4134
. 4459
. 5607
. 6592 | STATION 16
DELTA H
ON H1
.0304 | 6220
6220
6220
6200
6200
6200
6200
6200 | N N | ř | | 201.88 301
185.11 303
171.39 305
159.83 307
149.76 310 | 3 | | | 97.20
1032 66.44
1032 66.17
5756 76.98
117.30 | STATIC
14.6601 | 14.9960
15.0541 | 15.1483
15.1483
15.1779
15.1936 | | 975686
975739
975863
975863 | • | | | | 4- 111-46 | = | 27 | .D DESCRIPTI | 15 | | | 2 | | | 2000 2.4027
2000 3.4032
2000 4.5756
2000 5.1633 | 1 F 2 | 180 16-241/
180 16-2198
147 16-2048
148 16-1954
176 16-1896 | | 3644 | 202 125.17
202 125.394
234 125.565
24 125.698
25 125.698 | N N | | | • | .6955 .000
.2806 .000
.8781 .000
.0961 .000
.7082 .000
.3154 .000 | | 5.286 1.1027
5.286 1.1027
6.484 1.1026
7.0861 1.1014
7.7081 1.1014
8.3154 1.1016
8.3154 1.1016 | , FLOW-FIELD
REVENEENMEN | | | .9901 303.10
.5684 304.43
.1512 306.08
.7367 308.11
.3236 310.30 | | | | 6.5587 1.000
7.1512 4.000
7.7367 4.000
8.3236 4.000
8.9113 4.000 | | 4.8535 .3480
4.8535 .3480
5.4179 .3347
5.9901 .3248
6.5684 .3176 | | | . 8535 128.207
. 4179 128.202
. 9901 128.213
. 5684 128.234
. 1512 128.264 | | | | м ы. | 41010411000 | Ę ₹ | 1 W 4 W 4 V B 8 O 2 2 3 4 4 W W 4 4 V 7 9 8 9 | STATION 17
KWKWWWWW | = | + 10 1 | N 0 V E O | m • i | | | 0 V B 0 0 5 | ^ _ | N W 4 W 40 | | ≨m
Sa w.÷ | 14 10 4 7 4 10 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | ~ = | IC/14PR | RINT | |---
---|--|---
--|---|---|------------| | 888888 | MEIGHT
077323
077323
077324
077528
077600
077600
077600
077600 | 2122222222
21222222222
222222222222222 | 701AL
362.67
362.67
361.70
360.59 | 338.49 337.63 336.94 336.17 336.17 336.10
336.10 33 | .000
.000
.000
.000
.000
SPECIFIC
WEIGHT
.077517 | | ≈ % | | 35 ± 1 ± 25 ± 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | STATIC
STATIC
SZ2. 157
SZ2. 157
SZ2. 156
SZ3. 175
SZ3. 175
SZ3. 175
SZ3. 618
SZ4. 096
SZ4. 284
SZ4. 284 | (PHI+GATTA)
 | RADIAL
1.74
3.29
4.38 | 4.87
3.53
3.53
2.45
1.24
1.24
1.24
1.24
1.26
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.0 | .701
.364
.394
.200
.000
.000
static
523.682
523.682 | H. 12.22.22.23.14.14.14.14.14.14.14.14.14.14.14.14.14. | | | 215228
21 | TEIPER
TUTAL
554-627
554-130
554-137
554-132
554-132
554-573
554-573
554-573
554-573 | #174
#174
#174
#174
#174
#174
#174
#174 | F 1 2 5 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | SLOF | TEMPER
TAN.
.309 | 534.197
534.173
534.173
534.732
534.733
534.735
534.729
534.729
534.729
534.729 | 88 | | -69.1
-93.3
-135.0
-218.6
-465.6 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ENTROPY
976100
975903
975903
975904
975964
976020
976013
976110 | ٦٦
0 | 238 -46 237. 41 236. 92 336. 92 336. 93 336. 9 | -203.
-276.
-427.
-882.
-882.
-882.
-0381. | 5.0429
5.0483
5.0641
5.0646
5.0710
5.0742
5.0766
5.0766
5.0766
5.0766
5.0766 | 975908 | | 2.4535
2.4535
2.9455
3.4510
3.9672
4.4920 | PRESSUR
07AL
1675 1-
1680 1-
1657 11
1657 11
1659 11
1659 11
1659 11 | 9165
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
917717
91 | DESCRIPTION HIPPROHIMENT NAL TANGENTI NO 00 S | .00
.00
.00
.00
.00
.000
.000
.3314
.1074
1.53% | # K K K K T T T |
6.6.655
6.6.655
6.6.655
6.6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.655
6.65 | 60.5 | | 10.0000 | NATHER TO STATE OF ST | -ENTHAL
TAL
310 1
224 1
202 1
202 1
203 1
204 1
204 1
344 1 | | 338.49
337.63
337.63
336.17
336.17
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
336.03
36 | 1.0000
1.0000
1.0000
1.0000
1.3233
1.3233
1.3233
1.3233
1.3233 | 2226
2216
2206
2206
2206
2206
2206
2206 | E S | | 9859
14615
19535
19752
19752 | RADIUS
5.0080
5.3331
6.0999
6.5306
6.5306
6.5306
6.5306
8.4550
8.4550 | MD1US 10 10 10 10 10 10 10 10 10 10 10 10 10 | 11.54
27.08
27.08
27.08
27.08 | 7.0025
7.0028
7.9652
8.4670
9.5000
ESH-P
RADIUS
5.7080
1.55.7081
5.7108 11
6.1154 11 | | 5.7108
6.1154
7.0025
7.0025
7.4461
7.4461
7.4452
8.4470
9.5000
8.9792
9.5000
8.1174
128 | | | 27.28 mg | 517EAM
1 | EINE | STATION 23 EDENHASERHER STREAM PA 1 5.1 2 5.5 3 5.6 5 6.6 | STREAM - 9 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 27 7.7
8 8.7
10 8.5
11 9.8
11 9.8
LINE LINE 2 5.5 | 27 | N 4 | | | ъ- | | ທ ≅ | is - | in — | is = | | | 0000
0000 | 10174.
10174.
10174.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10176.
10 |
STATION WELE NO. 0000 0000 0000 0000 0000 0000 0000 | 9 SPECIFIC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7783 | 177-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 547.55
547.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18
541.18 | 88 | | 9.9.
8.88
8.89 | 42.54.88.44.68.44.68.44.68.44.44.44.44.44.44.44.44.44.44.44.44.44 | <u>"</u> | 289
289
289
289
289
289
289
289
289
289 | 42. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. | Š. | | | | | 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | SLOFE ANGL
5.957
5.957
5.105
5.105
1.536
2.941
2.357
1.820
1.820
1.820
1.820
1.820
1.840
1.840
1.840
1.840 | EIPERATUR
6.7 STO
709 SZ1.
197 SZ2.
173 SZ2.
222 SZ2.
207 SZ3.
207 SZ4.
207 SZ4. | | OSO M | 8.25
9.46
9.45
9.45
8.54
7.14
3.64
1.81
.00
810F MSLE
910F MSLE
910F MSLE | 8 | | 9866. 0. | 0 C 1 T 1
AXIAL
412.14
412.14
412.14
412.14
392.05
396.13
395.64
396.69
396.69
396.69
396.69 | RADIUS OF
CURUNTURE
-7.29
-11.38
-17.99
-28.20
-43.44
-66.33
-103.73
-17.99
-27.09 | ិ្ទត្តក្នុងក្នុងក្នុងក្នុង | ю ю | | 247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
247.24
24 | 47.09 | | 6 .0310
6 .0309 | ENTINE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1. COORD C. | mp | 15.1194 15.1194 15.1206 11. 976100 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 10. 975900 | ., myoo | : :::::::::::::::::::::::::::::::::::: | | | . 8906
. 8926
. DESCRIPTION | * | 9 | 1 P 2 2 2 2 2 2 2 2 2 2 2 | 16.16.
TALPIES 16.16.
STAT 125.4.
125.4.
125.5.
125.7.
125.7.
125.7. | | SQ40 | | | 50 1.1000
00 1.1000
FLOW-FIELD | 124
124
124
125
125
125
125
125
125
125
125
125
125 | X-COOR
X-COOR
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000 | MATHER
1370
13817
13817
13817
1380
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
13173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
10173
1 | | : 20 등 : H | 247.58
244.58
244.58
346.39
346.39
347.01
347.00
36.000
36.000 | 88 | | 9.5000
9.5000
ON 21 FLO | 5.0080
5.3115
5.6659
6.6593
6.9548
7.4360
7.4360
7.4360
9.5000 | RMIUS
5.0080
5.0080
5.3115
5.6659
6.0632
6.9548
7.4360
7.4369
7.93463
8.9690 | 8.0080
5.3118
5.653
6.0632
6.0632
6.0633
7.7546
7.7546
8.448 |
8.950
9.5000
9.5000
9.5000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6000
9.6 | ON 22 FI
SERVICE FINANCIAL FOR THE PROJUCE FINANCIAL FIN | 6.0999
6.0999
6.0999
6.0999
7.4615
7.4515
8.4590
9.5000
9.5000
8.0080 | 2.6989 | | STATIC | STREA
LINE
2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | STRE
LINE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | STATE TO THE STATE OF | STATII
MANDEN
STREN
LINE | STREAT STREET SERVICES | 104 | | | <u> </u> | | | | - | 8
2 [±] -10000000 | | | 3
5
5
5
5
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7 | v, | 727785
7.07785
7.07785
7.07785
609
609
643
643
643
728
728
728 | 3.763
3.763
3.030
7.374
5.790
BEVIATION | 88888888888888888888888888888888888888 | ON B
2475
2475
1948
11556
11029
1029 | 5<±0000000 | 88 | | 1.819
7.750
6.168
4.852
3.746 | 2.779
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240
1.240 | ****** | | | . 3674
. 3187
. 2850
. 2605
. 2423
. 2282
. 2166 | 1738
1738
1738
1738
174
175
176
176
176
176
176
176
176
176
176
176 | | | 77:12
1 | 111
47
100
00
101
101
101
101
101
101
101
101 | 834.5433 82
834.5430 82
834.746 82
834.729 82
84.729 82
84.729
82
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820
86.820 | | | 06044
04699
03643
02344
01979 | 5 | | | 456.97
-65.54
-72.11
-73.44
-53.05 | -70
-100,
-161,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-336,
-3 | 15.1206
15.1201
15.137
15.1357
15.1354
ENTROPY
.975955
.975926
.975926 | .976020
.976083
.976141
.976170
.976154
LING EDGE
BLADES IN | .3175
.3197
.3192
.3176
.3176
.3105
.3064
.3064
.3064
.3064
.3064 | - 4221 - 4094 - 3985 - 3876 - 5778 - 5866 - 5867 - | | 38 | | .0000
.3660
.7671
1.1985
1.6556
2.1345 | 2.631.
3.142.
3.665.
4.197.
4.736.
167.
167.
167. | | 125.893 97,0020 1125.891 97,0021 1125.973 97,6111 1125.973 97,6111 1125.974 97,6117 1125.974 97,6117 1126.974 97,6117 1126.974 97,6117 1126.974 97,6117 1126.974 97,6117 | 356.23
356.23
357.44
357.45
346.30
346.30
346.30
346.30 | # 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | E | | | 8.0000
8.0433
8.0433
8.1417
8.1958 | | | | | Marie 1 | <u>¥</u> | | | . 7970
11604
1587
19870
19165 | | | 5 |
4.7970
5.5870
5.5870
6.9165
7.4098
7.4098
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7.4105
7. | \$ 1970
\$ 1987
\$ 1410
\$ 165 | ********** | | | F - 0 to 4 to 4
F - 10 to 10 4 4
F - 10 10 10 4 4 | E 4000044 | £"
 | 7 7.4
9 8 7.5
10 8 8.5
11 9.8
STATION 20
ROTATING A1 | 4 N N N A A V V M M & 5 | # ~ 4 m 4 m 4 v 1 | - 3 | | | _ | Ε'n | E٦ | | | _ | 듣긔 | | | | | | | | | | | | | | | | | _ | , | | | | K | 4PF | |--|--|----------------------------------|---|---|--|----------------|--------------------|----------------|----------------|-----------------|--|--|-------------------|-----------------|--------------|---------------|----------------|--|--|----------------|-----------------------|------------------|--|----------------------|---|--|--------------------|-------------|---------------------------------------|----------------------------------|----------|----------------|------------------|---------|----------|------------------------------------|--------------------|--------------------------------|--------------------------------------|---|---|---|----------------------|------------------------------------|--|------------------------------| | DEVIATION CURVE 1 NUMBER OF POINTS = 6 RADIUS = 3.6250 | NORTH, IZED REKIDIONAL NORTHALIZED DEVIATION CHOOS CHOOS | | 2000 | | HER OF POINTS = 6 | 17ED HEBIDIONA | CHORD DISTRIBUTION | . 2000 | | | DEVIATION CURVE 3 NUMBER OF POINTS = 6 RADIUS = 5.3875 | NORMALIZED MERIDIONAL NORMALIZED DEVIATION | | ,0000 | | 0009. | 1.0000 | DEVIATION CURVE 4 NUMBER OF POINTS = 6 KADLUS = 6.5625 | NORMALIZED MERIDIONAL NORMALIZED DEVIATION CHARM | | 2000 .0000 | | 1,0000.1 | POINT | NORTALIZED PERIDIONAL NORTALIZED DEVIALION CHORD DISTRIBUTION | | , 6000 | - | NCE AND EXTRA DEVIATION DISTRIBUTION | RADIUS INCIDENCE EXTRA DEVIATION | 8 | 5.00 | 2.000 | 9.5 | 2.000 | . 5.
80
80
80
80
80 | 507 2.000 .000 | 3 | STREMISURFACE GEOMETRY SPECIFICATION | COMPLETING STATION 1 NAMES OF DESCRIBING
POINTS 11 IFAGS(1) | CTREAM THE BANTI | NUTBER | 3.0000 1 3.0000 | 3.6435 2 3.663B
4.2874 3 4.3320 | 90 4.9351 4 4.9899 -51.2616
88 5.856 5 5.438 -54.6769 | 6.2371 | | DEVIATIO | POINT | | • N P |) 4 R | 6
DEVIATIO | TALCO | | - 7 | n 4 | 10 Y | DEVIATIO | POINT | | - ^ | n | 4 N | • | DEVIATIO | POINT | - | . 11 | n 4 : | o vo | DEVIATIO | POINT | 6 | 1 P) 4 | RD 40 | INCIDENCE AND | INLET RADIUS | 5 | 20.5 | . 935 | 5.585 | | 7.543 | 8.8507 | | | KILIMAN | | × | 98. | | 0660 | 208 | | 60.043 | 63.023 | | | | | | | | | 19 AND 20 | | BLADE | .000 | 8.8 | 8 | 0.00 | 0 | 8.8 | 88 | - | | ****** | | | | | BLADE SECTION | BENERALMANA | LOW COST FAN ROTOR RUN 17 BNC 6/25/95 | | | • | | | | | | - | • | | | | | | | | | | 03785 | | 1 8 5
1 8 5
1 8 5 | | 25.5 | .04218 | 2. S | 03785 | | STATIONS | | DIFF | .06043 | .04699 | .02912 | 22250. | 0180 | .01807 | .02094 | | SSO | .046943 | .02912 | .02250.
77610. | 01807 | 0209 | | жиновиме | XR RUN 17 | | | | | | | | | | | | | | | | | | | 6880 | 0000 | | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 888 | 88 | 0000 | 888 | 000 | | BETWEEN S | | SOT | .01491 | .01236 | 00882 | .00757 | 90646 | .00679 | 00855 | 100. | 801 | 800 | 000 | 888 | 000 | 888 | APRITRARY HEAM INE | Вимонива | FAN ROTO | 3 | H. NO. | | | | | | | R BLADE | AS INCURTURNIED IN NBOVE RESULTS, BLAKE TITE & HOGENBORNEGENOORHOON HOON HOGENBORNEGENOORHOON HOGENBORNEGENOORHOON HOGENBORNEGENOORHOON HOGENBORNEGENOORHOON HOGENBORNEGENOORHOON HOGENBORNEGENOORHOON | DIFF | 78CTOR - | | | | | | 758 | 61. | | | | | | 6 15 15
6 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | TEAN - | жимови | LO4 COST | • | n. | - 0 | ۰, ۲ | 00 | - | 00 | | 2.5000 | 2.000 | 1.5000 | 88 | - 10 1 | n ⊶ | - 10 | ۰- | | | 72 | 1.049 | | | . 3761 | 754 | 5195 | 5992 | . 6812
7199 | | NATION F | RESULTS | CASCADE | 2.0270 | 1.9000 | 1.6514 | 1.5546 | 1.3958 | 7,46 | 222 | | 9. | 3 K | 35.56 | 25 E | 3280 | 381 | 20.2 | | • | | 5 | SEGNENT | 2 | • 1 | • • | • • | • | • • | •• | • • | | |
88 | žă
Šă | • • | ı | | 7.708 | 8.915
6.915 | | | | | | | | | r DETERMI | IN RBUNE | OUTLET | 4.797 | 5.160 | 5.987 | 6.441 | 7.410 | 7.917 | 8.965 | _ | | | | | | 888 | Ā | маниван | | ISURFACES | MT-2 P. | | 2
2
2
3 | | | | | | | | TOLE | TATION NO | DEVIATI | N INDICA | | | | 7.591 | 8.231
8.865 | _ | | | | | | | | EFFICIEN | | INET | 4.382 | 4.789 | 5.714 | 6.216 | 7.272 | 7.018 | 7,6 | 8.4 | ANGLE | 88 | § § | 8
8
8 | 88 | 8
8
8
8 | 3 2 | | | OF STREM | OF CONST | of Point | OF BLADE | | | | | | | | . ! | e eder si | PECIFYIN
PECIFYIN | F ROTATIC | | | | • | •2: | : | E 31. | - N P | . 4 4 | •• | - 20 4 | 2= | | SSOT | | STREAM | ¥ | n P | • | 10 4 | ~ | . | ٠2: | = | LINE | - 11 | n 4 | n 🍫 | ~ 8 | • 2 : | 1.1
Poncoe | | TITE | NUTBER | NUTBER | | NUMBER | PUNCH | PRINT | ISPLIT | SP. | ZINNER | SCALE
SCALE | STACKX | TOLE . | TRAILIN | PADI 1 S | SENSE O | IDELET | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | s - | • | î | 11 | 358.50 | F 9 | 8.5 | = 1 | 3 % 2 | , K | 20. | WGLE | 38 | 88 | 88 | 88 | 88 | 383 | B | IFIC | 609 | <u> </u> | 38 | 515 | .0775B7 | ; | | | | | | | | | | 1.10 | | ; | 2 | | | | | | | 187 | F 10 2 | ì | 8.8 | | | | | | | | | | NE STA | LE LEAN | • • | • | •• | ••• | ••• | 383 | • | | | | | | | | 8 | 187 | Š | . 587
. 605 | .56
.54 | .327 | 900 | | | RAT 10 - | | : | | | PLADE | | | | | | | | 88 | | | E S | 8: | 7.7
7.7 | 9.7 | 'n | , , , | | STREAML | LOPE ANG | 3 <u>1</u> | * 5 | 1 | 83 | 3 | 168 | 8 | m | | | | | 524.084
524.084 | ň | ANGLE
000 | 88 | 8 | 88 | 88 | 8 | 88 | | RGED | KKKIBBKKIBRK
TOTAL PRESSURE | 2 | | STATIONS | | LOSS | | | | | 8 | 888 | 38 | ب | | | - | . 2 : | Ħ 8 | 20.00 | 2 | 228.22 | 8. K. | 10S OF | ATURE | 8 | 88 | 38 | 88 | 38 | 88 | 8. | | | | | | 33 534.766 | ń | | 975955 | | | | | | | IS COM | NYSPERIMENT
TO TOTAL | - 6 | | E BETWEE | | T LOSS | 7.0089 | 7600. | 66.
200. | | • | • • | • • | • • | | | | | | n | , ,, | | nn | - | [≥ | | | | | | | | ᅩᄂ | 22 | 8.8 | | | 15.0633 | | 976 | 5 | 5 | 66 | 976 | 92 | | | 110 | XB. 450 | | . ! | 본범 | • | 2 | =1 | | 58 | | . 975926 | . 975964
. 976020
 | . 976141 | .976170 | į | | ٥, | | | | | | | BAD. | | | | | | | | | | | | 22 | 22 | 2 S. S. | : : | <u>د</u> ج | 9: | 2 = | ខ្លួ | % F | 10 | 2 2 | ! | 킇 | # P | 2 | | 3.8
E.E. | 9001X | | | , E | | | 125.632 . 975926 | 125.667 .975964
125.710 .976020 | 125.791 .976141 | 125.810 .976170 .
125.803 .976154 . | 77.000 | именировим
Виромировим | V E L 0 | . 00. | 88 | 88 | 8 | 88 | 8 8 | COORDS RAD | L-0080 | .3347 | .7091 | 1.5498 | 2.0051 | 2.9653 | 3.9742 | 4.4920 | TOTAL | 16. 1675
16. 1680 | 16. 1672
16. 1659 | 3 16.1657 | | | | STATIC
125.744 | | | | | | | | THE CALCULATION IS | ₫ ፎ | 904.7
PG | | MINATION FOR BL
AE RESULTS, BLA | | CASCADE
SOLIDITY | 2.5223 | | 1.7107 | | 128.213 125.632 .975926 | 128.24 125.667 .975964
128.264 125.710 .976020 | 128.328 125.791 .976141 | 128.334 125.810 .976170 . | 100000000000000000000000000000000000000 | MATIELD DESCRIPTION | 0 T E F O | 358.50 .00 | 358.31 | 358.08 | 328.18 | 358.25 | 358.29
358.25 | 4-POINT COORDS | X-C0080 L-C0080 | 12.000 .3347 | 12.0000 .7091 | 12.0000 1.5498 | 12.0000 2.0051 | 12.0000 2.9653 | 12,0000 3,4647 | 12.0000 4.4920 | NACHPREST | .3195 16.1675 | .3195 16.1672 | 3193 | .3193 | 1915. | 5 E | TOTAL | 128.23 | 128.202 | 128.213 | 128.264 | 128.328 | 2 2 2 | | ¥ • | B844.000 FL | . 4067 PG | | NT DETERMINATION FOR BLADE BETWEEN
ID IN ABOVE RESULTS, BLADE TYPE 1 | | DUTLET CASCADE | 3.625 2.5223 | 4.696 1.9914 | 5.281 1.8386
5.878 1.7107 | | 128.213 125.632 .975926 | 234 125.667 .975964
264 125.710 .976020 | . 4670 128.328 125.791 .976141 . | 128.334 125.810 .976170 . | :
: | SINI 100 27 TLUM-FIELD DESCRIPTION WHENEMERHENEMENEMENTERSORES | V E L 0 | 5.0080 358.50 .00 | 88 | 358.08 | 4859 358.18 .00 | 358.25 | .9822 358.29 .00
.5000 358.25 .00 | HESH-POINT COORDS | X-C0080 L-C0080 | 12.000 .3347 | 12.0000 .7091 | 12.0000 1.5498 | 12.0000 2.0051 | 12.0000 2.9653 | 3.9742 | 9.5000 12.0000 4.4920 | NACHPREST | 5.00B0 .3195 16.1675
5.3427 .3196 16.16B0 | .3195 16.1672 | 3193 | .3193 | | PADTIEENTH | TOTAL | | 128.202 | 128.213 | 128.264 | 128.328 | 2 2 2 | | PASS 6 THE | ₫ ፎ | ETETENCY | | LOSS COEFFICIENT DETERMINATION FOR BLASS INCORPORATED IN ABOVE RESULTS, BLA | or worn noog in degeneral nees in degener degener | CASCADE
SOLIDITY | 3.000 3.625 2.5223 | 4.332 4.696 1.9914 | 5.644 5.878 1.7107 | | Г | | | | | | | _ | | | | | | _ | | | | | | | | | | | | | | | | | _ | 10 | 14 | PRII | ጘ | |--------------|----------------|----------------------------|------------|-------------|-----------|------------|-------------|-------------|------------|--------------|---------------|---------------|--------------|--------------------|---------------|---------------|--------|------------|-------------|----------------|-----------|-------------|--------------|-----------|-----------------------------|-------------|-------------|--------------|----------------|------------------|---------------|--------------|------------------------|-----------------------------------|----------|---|--|---------------------------|---------------------------------------|-------------|--------------------------|---------------------------------------|----------|------------------------------|--|----------|--------------------------|----------|--------------|-------------|------------------------------|------------|----------------|--------------------------|-------------|--------------------|-----------|----------------|-----------| 2 | : ; | . 42763 | | 28795 | 24386 | . 15977 | . 11999 | .04546 | 02164 | 05219 | 10685 | - 15270 | 17231 | 20491 | B0677 - | 24489 | 24962 | | .28177 | 24827 | 71522 | . 22545 | - 19948 | . 18360 | | | 1.0369 | .9583 | 1325 | 7216. | .9260 | | 88.6 | 1.0161 | 95.0 | 1.0651 | 1.0757 | 1.0756 | 1.0712 | 1.0662
1.0607 | 1.0547 | 1.94 | 1.0351 | 1.0218 | 1.0174 | 1.0205 | 1.0278 | 1.0534 | 1.0723 | 1.094 | | | | | | | | | | | 22 | | | | | | | | | 72910 | | | | | | | | | | | | | | | | | | 20319 | 23449 | 234 | 20291 | 17145 | 1221 | 04627 | 01299 | 97586 | 94646 | 93539 | 92993 | 92264 | 93912
94638 | 95542 | .97882 | 99319 | 02724 | 04500 | 07425 | 08574 | 10246 | 10768 | 11081 | 8 | | | | | | | | | - | 22 | | | | | | | | | . 16053 | - | | | | - | - | | | | | | | | | • | | | | _ | | - | | • | | | | | | | | | STREAMSURFACE | | : : | 46954 | 43783 | 37.782 | 34957 | 2962 | 27189 3 | 22661 | 18679 | 15273 | 1377 | 11173 | 95001 | 08149 | 0,541 | 05440 | 04963 | 04554
04771 | 325 | 28720 | 03655 | 03705 | 04063 | 04578 | | | 2949 -21.73308 | 2005 - 20.3
1601 - 18.9 | 5335 -17.9 | 2009 -16.1 | 176 -13.2 | 672 -11.6 | 499 -9.2 | - 4.9 | ÷; | | 2.0 | 28/ | 12 | 793 1.6 | 986 | 19387 5.3 | 7.7 | 173 10.2 | 745 11.8 | 573 | 1147 15.3 | 5508 16.0 | 1068 19.2 | 5266 20.4 | 21.1 | | |)EC) | Y day | ř | 3907 | 1 | 8500 | 8 | × | | | | | | | | | 71935 | | | | | | | | | | | | | | | | | g
33 | • | 77 | 7 | 7 | ; ; | 7 | 7 | 7 | 7 | 7 7 | 7 | 7 7 | 7 | | 7 | 1 2227 | ï | 77 | 7 | | 7 | • | • | ï | • | | | . N Y-D(DEG) | . C | .20000 -24.25734 | B.11-8 | 200 | 000 21.7 | COORDINATES | | | | | | | | | | 3.15592 | | | | | | | | | | | |
| | | | | oe 14 . | | | | | | | | | | | | | | | | 2 K | | | | | | | | 76. | 8
• | | DATA POINTS | POINT FRAC. | | . 8 | | | - | CARTESIAN D | 17 TNIO | | - 2
- 2
- 3 | n | , io | 91 | | . S | 22 | 12 3.1 | 12
13
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | | | | | | 24 3.3 | | | | | | | | | | 2 | 1 | 5 | 2 | | | | | | 5 | 8 | 2 | - | | | | | | | - | 2420 | | | | | | | | | | _ | | | 8: | 55 | 8 | 5 2 | = = | 8 | 5 5 | : = | = : | 5 5 | : = : | 5 5 | : = | 2.2 | 38 | | | 5 | . 5 | 5 5 | 2 | 2 2 | : X | 2 2 | 2 2 | 02 | | | | | | | | | | | | | 8.33277E-02 | 1.09507E- | 1.5300BE- | 1.74340E- | 2.063166- | -2.19041E- | 2.2%63/E- | 2.4452ZE- | 2.48833E- | 2.51073E- | 2.49373E- | -2.45431E- | 2.313306- | -2.21151E- | 1.94471 | 047 | > | -1.77939E- | 1.5924BE- | 1.38383E- | 9.00636E- | 6.258B0E- | 9.53495E- | 3.3195ZE- | 6. 95597E-02
1.08132E-01 | | | | | | | | | | | | - | | | | | | | | | | | | NEW DELX . | | OF CURV | 1.8436 | 1.7880 | 1.6547 | 1.5793 | 1.47
1.473 | 1.33 | 1.1677 | 1.0.1 | | | .34981E-01 | 805E-01 . | | | | | | | | | | | | | | PFACE | * | 213E-01 | 105E-01 | SBZE-01 . | 30BE+00 | 999E+00 . | 187E+00 | 676E+00 | 44088E+00 | 2720. | | Y-180 | .91824 | .92085 | 787.
7117. | 70096 | . 763eu
1.01236 | 1.04633 | 1.13001 | 1.1715 | | | Ψ, | 7 7 | Ŧ | 77 | 7 7 | 7 | 7 | . • | - | | | * * | - 60 | • | • | | } | _ | • | - | | | | _ | | | EDGE RADIUS | > | 10.307.11 | 37168E-01 | 19193E-01 | 0391E-01 | 3092E-01 | 6099E-01 | 7676E-01 | 0893E-01 | 2497E-01 | 2610E-01 | 07084E-01 | 9787E-01 | 2067E-01 | 3016E-01 | 4481E-01 | .14980E-01 | 15486E-01
15487E-01 | 53206-01 | 4488E-01 | 3853E-01 | | ž. | Y-D (DEC) | 92886 | 12728 | .39795 | -29.48932 | . 55431
. 55431 | 5.51495 | 25735 | 6.02675 | | | 1.50137E | 1.35311E-01 | 1.09771E | 9.B9066E | 8.054136 | 7.28740E | 6.61234E | 5.513726 | 5.08067E | 4.721B0E | 4.22497E | 4.08784E | 4.0410SE | 4.13426E- | 4.5636BE | 30 | > | 4. 9047BE | S. 33353E- | 5.85358E- | 7.1B167E | 7.99631E- | 9.93899E | 1.10731E | 1.25184E-01 | | LEADING ET | | • | . 4 | * | * * | ** | • | * * | r so | n n | 10.1 | n un | SO (| n un | | n Ko | n n | 60 100 | 101 | n in
R R | 25 | FEE | | خ
خ | 00000 | | .02791 -3.
.04118 -30 | 0539B -2 | .06631 -ca | - 64680 | 19011
11061 | . 12021. | | | 1010E-01 | -4.94929E-01 | 3849E-01 | 7716E-01 | 762E-01 | 1247E-01 | 53Z0E-02 | 3506-02 | 1932E-01 | H35E-01 | 354E-01 | 227E-01 | 983E-01 | 141E-01 | 23.7E-01 | REACE | × | 1212E-01 | 57BE-01 | 3596-01 | Z38E+00 | 1073E+00 | 936E+00 | 973E+00 | .42087E+00
.492B0E+00 | | DESCRIBING | × | | -1.55449 | -1.55569 | -1.55677 | -1.55853 | -1.55968 | -1.56002 | -1.56019 | -1.56002 | -1.55919 | -1.55854
-1.55772 | -1.55678 | -1.55451 | -1.55320 | -1.55033 | -1.548B0E+00
-1.54722E+00 | -1.54562 | -1.54240 | -1.53929 | -1.53781 | EDGE AXIAL D | - 10 th | FRAC. H | 00000 | 77770 | 04449
06667 | 68880 | === | 15556 | 20000 | - 2222 | | | 15 -5.6 | | | | | | | | | | | | | 20.0 | | | 2 | • | | ۰ - | - | | • | - | \$ \$
2 | | POINTS DE | POINT NO. | • | - ~ | 100 | 4 14 | • • | - 60 | • 9 | 3 = | 2 2 | 1 | 2 4 | 2 | 2 | 8 | : 2 | 2 2 | 2 23 | 2 | ₩ % | ន | | | POINT FR | - | ~, | n c | . 20 | • ^ | | • 2 | = | | | | | | | | | | | | | | | | | | _ | _ | | | | | | | | | | | 10:23a | .48489238 | 240 | : | 242 | 244 | | 245 | 245 | : | - 24 | 243 | 371 | 147: | 238 | 235 | -,231 |
! | 226 | 221 | 316 | } | 20B | -, 200 | | 192 | .183 | ţ | ? | 163 | .152 | ! ! | - | 127 | UFBER | | CHORD | × | | 10-01 |
! | | | | | - | | | | | | | | | | | | | | _ | | 6-25-95 | | | | 53105 | . 55414 | | 577725. | 72 .60031 | | . 62337 | 64641 | 7077 | | 10 .69234 | 71522 | 7,7902 | | 76072 | 9 .78552 | 00000 | | 9 .82815 | 9 .85034 | | . B7237 | 0.89420 | | | 42/26 9 | . 95841 | | 42679.24 | 6 1.00000 | SECTION N | | PECIFIED | H NEWS HE WAS ASSESSED. | | S | | | | | | | | | | _ | Ę | Ş | 55 | 5 | 55 | ; ; | 5 F | 8 | ន់ន | 29- | | . | .4962114162 | R1777 - 14754 | !
! | .5383214520 | 93714662 | | .5804214779 | .6014814872 | : | .6225614941 | 36614986 | 74480 - 18004 | . 194
194 | .6860015001 | 72714970 | 728K1 - 14914 | | - 14830 | .7715814719 | 131 - 14670 | | .B150214409 | 697 14209 | | .8590913976 | .8813913710 | 727 | | .9266313076 | 959 - 12706 | | .9728112300 | .9962811856 1.00000127 | D PLOT OF | | BLADE OF S | МИМИМИМ | | 1 E44BE+07 | | | | | | | | AXIS) | | 2 > | 4 B714BE-01 | | | | | 1.59542E-01 | | | | | | RESULTS, OUT | .09718 | nezen | | . 09806 | 72655. | | . 09739 | .09647 | | . 09517 . 62 | .09347 .64366 | 0E100 | | 89 . 06880. | 72707. 20980. | CC - 272 | | .0790B | 77. 00570. | 707060 70777 | | .06559 .81 | 76928. 83697 | | .05447 .85 | .04825 .88 | | | .03442 .92 | 02480 . 94959 | | .01B6B | .01006 | NORMALISED PLOT OF SECTION NUMBER | | DIMENSIONAL RESULTS - ALL RESULTS REFER TO A BLADE OF SPECIFIED CHORD | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | CENTEDED AT V1 64406400 V. S 00106-01 | :
: | | GIOS | | | CIOCUST TIME ADE SO STORM CHOTES MATTER | | -6.710 WITH CX) | | SUGACE | 00738133 | .49027E+00 | 42705E+00 | 9959E+00 | 23530E+00 | 0543E+00 | 72979E+00 | 16964E-01 | 19740E-01 | 13722E-01 | | RES | -6.685.09 | . 4Ko | | 4.253 | -3.060 | | -1.875 | 693 | | .493 | 1.685 .09 | | 5. | 4.089 | 5.304 .08 | 80.0 | | 7.765 .07 | 9.012 .07 | | | 11.544 .06 | 12.825 .06 | | 14.111 | 15.397 .04 | | | | | | | | | | RESULTS RE | WENNERWOOD | 6 | | | _ | BOUT CENTR | | | OC ABEA | 5 | (AT -6.710
(AT -6.710 | | | ì | • | 7 7 | • | 7 7 | · · | 7 1 | 1 | 7 % | ï | | | 18987 | - 1877 | | 19410 - | 188 | |
2848 | 19695 | | - 19699 | 19657 | 9730 | | -,19435 | 19253 | | | 18748 | 18423 | - 18048 10 272 | | 17622 | 17146 | | 16617 1 | 16036 1 | | 15402 16.6/9 | -,14713 17,955 | - 17971 19.219 | | 13175 20.469 | 99814 12324 21.701 | | | TS - ALL | Венимения. | BLADE CHORD = 3.08206E+00 | E4107E-03 | | SECTION AREA 6.53703E-01 | SECOND HOMENTS OF AREA ABOUT CENTROID | 47E-02 | 31E-01
43E-02 | P. MONEWIC | S INCHES | | | - A | 10-30Cot1 8 | | | | | 2.95949E-01 | | | | | | | .49055 | 27613 | | .53469 | A5476 | | .57883 | 6009 | | .62297 | .64503 | 0.677 | 01/00 | .68917 | .71124 | 1 | | .75538 | .77745 | 70067 | | .82159 | .84366 | ! | .86573 | .88779 | ì | 9804 | .93193 | 05400 | | .97607 | .99814 | | | INAL RESUL | THE MEMBERS | CHORD = 3 | | | N AREA- 6 | HOMENTS | | = 3.40031E-01 | DA GETON | | 8.86027E-03 | | SURFACE | 77475100 | -1.53642E+00
-1.4640BE+00 | \$9204E+00 | 4898E+00 | 7801E+00 | 10/1/E100 | 57750E-01 | 10059E-01 | \$2025E-01 | 7527E-01 | | | ĸ | 7 | • | ĸ | * | | 23 | 8 | | 8 | ន្ត | ; | 7 | ß | Ħ | ž | ; | ĸ | × | ŧ | ì | Ħ | ñ | i | ş | Ŧ | ; | ž | ‡ | 1 | : | ŧ. | \$ | | | DIMENSIO | МИМИМИМ | BLADE | - | 2 | SECTIO | SECOND | Ħ | <u>}</u> | 101100 | KIK | ¥ ¥ | • | 5
5
8 | | - 2 | | | | | | | | | | | | ÷ | ° | | 66 ^= | ÷ | : | ? | • 19 | | í . | ÷ 29 | => 32 | | • | 2 6 | => 36 | * | 3 | ° 26 | • 16 | 1 | ?
` | ÷ 83 | 2 | . | -> 62 | 26 4 | i | • 21 | = > 36 | 1 | 8 | . 41 | - | _ | 6. | - | | _ | | | _ | | | | | | ~ | _ | _ | _ | _ | | _ | | | | | _ | _ | | | | | | | | | | | | 714P | RINT | 1 | |--|-----------------------|-------------------------|---------------------------------|----------------------------------|---|-----------------------|-----------------------|-----------------------
--|--|--|---|-----------------------|--|---------------|---------------|--|---|--|-----------------------|------------------------|--------------------------|--------------------|---|----------------------------------|---------------------------------------|----------------------|---|---|---|-----------------------|--|---|---|-----------------------|-----------------------|------------------------|--------------------------------------|--|--|----------------------------|--|--|--|-----------| | | .zev | SURFACE COORDINATE DATA | | 200720 00281. | 96675. BEI/I | 18038 .31/60 | .3778118902 .33983272 | .3996519732 .36219283 | .4213820530 .38464294 | .4430221300 .40720304 | .4645722042 .42984313 | 22761 .45256 | .5074323456 .47536330 | 24130 .49822 | 24784 .52114 | - 25420 54412 | 31tte: 03te3:- | .5924126038 .56714357 | .6135526637 .59019362 | .6346627219 .61328367 | .6557527783 .63638371 | .67683 28329 . 65948 374 | 775 68259 377 | 29369 .70569 | .7401329862 .72876380 | 30337 .75180 | 7824730793 .77480382 | 31231 .79775 | .8250131650 .82064381 | .84345 | .8678732430 .86617377 | .8894332789 .88879375 | .9111133128 .91130371 | .9329233447 .93369368 | .9548633743 .95594363 | .9769434019 .97B0535B | .9991834272 1.00000353 | NORMALISED PLOT OF SECTION NUMBER | | O A BLADE OF SPECIFIED CHORD | | CENTERED AT X= -1.4693E+00 Y= 7.7883E-01 | | | | | .07364 | 9 470. | ¥ L | | 0/180 | Breau. | C 6895 | .09157 | .09415 | BC960. | .09B24 | .09972 | .10082 | .10153 | 10184 | .10173 | 10133 | . 1012 | .10030 | 66B60° | .0972B | .09519 | 17260. | .08985 | .08661 | .08299 | .07901 | .07464 | 16690 | .06481 | .05934 | 08380 | .0472B | .04070 | .03374 | .02640 | .01869 | .01059 | MORTA | | REFER TO | | ERED AT | | MTROID | | | | . 27044 18634-28. 778 | HEANLINE DATA | A T MANUELLE | 17841 | | . 33673 22037-25. 561 | .3588223069-24.498 | .3809224051-23.445 | .4030124985-22.407 | .4251125873-21.385 | .4472026716-20.381 | | .4913928272-18.416 | 28967-17.451 | 29662-16. 494 | T0304-18 E47 | | .5797830891-14.595 | .601B731447-13.647 | .6239731964-12.697 | .6460632443-11.742 | .6681632883-10.783 | .6902533284 -9.819 | 33648 | 33972 | 342SB | | 34714 | .8228334883 -3.872 | .8449235013 -2.848 | .8670235103 -1.817 | .88911 35153 780 | | 35133 1.307 | .9554035062 2.354 | .9774934951 3.401 | .9995934800 4.447 | | | DITENSIONAL RESULTS - ALL RESULTS | M ADE CHOSD - 1 1764/25400 | - 1.58970E-02 | A= 6.76473E-01 | SECOND MOMENTS OF AREA ABOUT CENTROID | | | 21 | 2 | POINT | | <u>:</u> | E : | 2 | 11 | 91 | 19 | 8 | 12 | ĸ | ដ | * | K | . | 8 | 12 | 8 | 8 | ន្ត | 31 | Ħ | p | Ř | R | × | i i | Ħ | ñ | Ş | Ŧ | 42 | â | ‡ | ŧ. | \$ | | | DIMENSION | 1 All | L.E.PADTUS | SECTIO | SECON | Page 1 | | | * | - | | ÷ | . 71 | . 35 | | 3 1 | ₽ | ÷ | • 44 | ê
• | : | ÷ 8 | •
\$ | • 39 | •> 72 | | | . 57 | 6 | •> 05 | %
• | : | -> 26 | • • 63 | . 80 | • | • | -> 17 | • | : 1 | • 11 | ₽ : | 20 | • | * | . · 28 | • • | - | | | | | | | 34 .72333341677.87075 .78567 1.3095
35 .7732634704 -5.89050 .788715 1.2953
36 .7777234704 -5.89050 .79315 1.2810 | .8222235084 -3.87194 | | . 11119 15525 11119 11119 11119 | . 95556 - 35264 2.35427 .82386 1 | .9777835152 3.40126 .82484 1
1.0000034999 4.44682 .82517 1 | STATA POINTS | CESTAL NO. TACK TAICO | | 1 .00000 -40.73150
2 .20166 -31.88780 | 3 .40145 -22.33957
4 .60084 -13.61126 | 5 .800Z3 -4.87591
6 1.00000 4.44682 | 1 STREATSURFACE GEOTETRY ON STREATLINE NAMER 2 INDERINGENIDERINGENINGENINGENINGENINGENINGENINGENING | 40.731 (BLADE | BETAZ = 4.47 (BLADE CUTLET ANGLE) YZERO = .00500 (BLADE LEADING EDGE RADIUS AS A FRACTION OF CHORD) | 09620 | 2200 | COMO . 3.0030 CHEKIDIOWAL CHICKO UP SECIION) | NORMALIZED RESULTS - ALL THE FOLLOWING REFER TO A BE AND LANGUAGE A MEDITIONAL CHIEF POSITION OF LIVITY | MODELINGER INCHARGE RECORD CONTROL OF THE STATE ST | BLADE CHORD = 1.0587 | STAGGER AVGLE =-19.290 | CAMBER ANGLE =-45.178 | SECTION AREA 07501 | LOCATION OF CENTROID RELATIVE TO LEADING EDGE | XBAR = . 49457
YBAR = -,25935 | SECOND HORBY'S OF AREA ABOUT CENTROID | | IY = .00412
IXY =00139 | ANGLE OF INCLINATION OF (DNE) PRINCIPAL AXIS TO (X) AXIS =-19.071 | PRINCIPM, SECOND MONENTS OF AREA ABOUT CENTROLD | •0000 | IPY = .00460 (AT-19.071 WITH (Y) AXIS) | POINT MEANLINE DATA SURFACE CORDINATE DATA NUMBER X Y ANGLE THICKNESS XI Y1 X2 Y2 | 0. 27800. 05010. 227.04-00000. 05280. 1 | | | | 07138-37,028 .0341 .104405485 .08271 | - 10000 - 2000 -
2000 - | - 10451- 47500- 575131 - 58579 - 12401 | 4077 - 4074 ATT ATT 44400 | | 14747-31.966 .06430 .2211712019 .18713 | .2262516098-30.912 .06912 .2440013133 .20849 | | | 16484
14415
12117 | 06836 | 03854
00638 | .06494 | . 10421 | TY = 2.2746 | 35 10:23a | | .91665
.98369
.05027 | SOLIDITY
S SOLIDITY | | CURV | 79067 | .7663
.7040 | . 6468
5944 | .5467
.5036 | . 4649
475 | 4005 | 3548 | 2224 | | 7125. | 325 | 3508 | 1 | . 1895
1895 | 365 | 8 9 8
8 8 8 8 | 282 | 222 | 6-25-95 | | 49959
51448
52923 | 52806 | 57203 | 61134 | • 6Z334 | N = 8.881 | • | Y-DD R OF | 10531 | 1.20233 | 19339
18668 | 7849
6881 | 5763 | 3063 | 9616 | 3001 | Y-18 R OF | 1110 | 7628 | 6.5 | 2699 | 8687 | 20201 | 78921 | 0.5 | 752 | TS.OUT | | 05283
05283
3 | | | | | YSENI | 47665 | 47.756 | 47976 | 48103
48239 | 48384
48534 | 48689
48847 | 49006
49165 | 49321 | 49620 | 696 | 50119 | 50215
50298 | 50365 | 50453 | 50473
50476 | 50453
50433 | 50386
50325 | 50248 | DEVIATION | | | | | | | | | | | | _ | | | | | | | | | | | 87893
94431 | | | | • | 15 | | | • • | | | • | 50074 | • | | | | • | • | • | | • | | • | FERATION 2 | ERATION 2 | Y Y-D(DEG) | 7.04- 0000 | 01884 -37.83870
03708 -38.92322
05473 -37.98584 | 7179 -57.00 | 911 - 35.0 | 3416 -33.0 | 6190 -30.9 | 8741 -28.7 | 1075 -26.6
2163 -25.5 |)Q-X | Ý. | 4189 -23.4 | 6022 -21.3 | 7674 -19.3 | 9154 -17.4 | 0470 -15.5 | 31627 -14.59528 | 2629 -11.7 | 273 | | | . 49528
50883
52246 1. | | | | - | ZSENIX | 7 | 77 | 77 | 77 | 77 | 77 | 95955 -1.
95932 -1. | 77 | 777 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 7 | ACE 2 1T | i t | E .: | | 04444 | | | | | | | = | | • | • | · | i i i | • • | 57778
00009. | • | • | 1 | | the single state of the o | nn | nn | n n | m | POINT 25 | ~ | i (ri (| N N | n n | n n | NN | 12 2.9 | N | 1 70 1 | 101 | 1 11 | N N | N (| 'n | N N | N N | NN | N | STREAMSURFA | | POINT FRAC | | ,,,
,,, | | | | | | | | | | | | | | 7.81
P: 8: | | | | | | | | | | ٤ | | | | | | | | | | | | | | | | | | | is | | • | | | | | | | | | £ | 10 | 3 4PR | |---|-------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------|---|---|-------------------------|---------------------------------|-------------------------------------|------------------------|------------------------|---|---|---|--|------------------------|-------------------------------------|------------------------|---|---------------|---|-------------------|--|---|-------------------------------------|----------------|---|---------------------------------|--| | 20526
16021
11689
07540 | 062790 | 16291 | 21435
23733
23850 | 2954
2954
31126 | 32532 | 36398 | 37282
37456 | 37460
37290
34946 | 36407
35692 | 34812
33749
32503 | 29461 | | | | | | | | | | | | | | 2.0804 | : | | | | | | 80234
73822
67339 | | | | | | • • • | • • | | • • | 2223
2845
3456 | • • | | | | | | | | | | | | | | SQ.1017 | | 6219 | 4701 | 8 K | 1 4 5 | | 79920
81202
82403
82534 | | | | | 96285
97136
97993 | 99731 | 01523 | 04354 | 06345 | 09446 | 11558 1. | | | | | | | | | | | | | | 6.928 | . ~ | | 08208 | | | | . 35222
. 32208
. 32208
. 29303
. 29303
. 29303 | nnn | inn | innn | nnn | ที่ที่ที | n n a | ÷ | 444 | 44 | 4 4 4 | 44 | YSEHI | 74595 | 74826
74958
75100 | 75249
75404
75563 | 75725
75888
74050 | 76209 | 76653
76784 | 76905
77013 | 7 7 1 8
3 4 8
3 4 1 8 | 13.5 | 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 77248 | 77003 | DEVIATION | | - | | -i -i - | | | 76099
69389
62720
54091 | | | | | | | | | | | | XSENI | | | | | | | | 47009
46858 | | | | | ITERATION 1 | | 0000 -45.2 | 02219 -44.60616
04384 -43.89900
06495 -43.17550 | 127
127
127
127
127 | 121
120
120
120
120
120
120
120
120
120 | | 29048 | | | | | | | | | | | | ZSEMI | 8840 -1.
8791 -1. | 777 | 777 | 777 | . 4 4 . | 777 | 777 | 58369 -1.
58413 -1. | 777 | 777 | 777 | | n | E | | 2220.
1444.
64444.
64647. | | | | :::::::::::::::::::::::::::::::::::::: | nnnı | nnn | 1228 | nnn | M M 4 | 44 | • • • | ** | i d i d i | 444 | ** | POINT 25 | 2 | n 4 m
n 4 m
n n n
n n n | ************ | • 01 =
8 12 12 12 12 12 12 12 12 12 12 12 12 12 | 122 | 15
15
15
15
15
15 | ท่ท่า | 228 | n n | n n r | inn | n n | STREAMSURFACE | POINT FRAC. | 8: | nn 4
B 2 8 | e 4. | ra.
Eii: | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | R | £ | | | | | | | | | | | | ~ | | | | | - | • | | | | | | | | | | | | | | | | | | · | | | | .017 | ğ | .74595 | . 62561
. 56767 | 45619 | . 35086 | | | | N DELX . | OF CURV | 1.9067
1.8337
1.7663 | 1.046
1.6468 | 1.50567 | 1 1 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1.3753 | .324 | 1.2217 | 3834 | . 1872
1. 1895 | 1.3927
1.3925
1.3886 | 1.3705 | . 358
. 358
. 358 | 2955 | 7252 | 22.1 | 7512. | 1.2229 | | - | | | | 22 | 47359 | . 35572
1.29620 | 23623 | 1.05346 | | | | .0177 NEW | œ | 20531 | 1986 | 6 18 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14497 | 11436 | 05399 | 97628 | 91699 | 84646
82898 | 81452
80307
79463 | .78921
.78591
.78370 | 78257 | 78867 | 79851 | 81333
81694 | 82221
82221 | 82517 | | | | | | , 2 | | 3.63745
3.65999 | | | | 7.94302E-01
7.9459E-01
7.94722E-01
7.94672E-01
7.9448E-01 | 053E-01
491E-01
769E-01 | ď | | 13150
13870
12222 | 127572 | 5261 1 | # P P P | 1788 |
818
818
818 | 14499
14499
10652 | 8547
8135 | | | 4732
9677
4242 | 11912
11912
14840 | .88504
.88504 | | | | | ÷ | | | | | MISURE RUE
Y1 | | .63972
.63972 | | | | 88888
***** | 8888 | 00 7.90
00 7.90
IFFERENCE | g-, . | ¥ Pi Pi | ĢĢ | វគុគុរ | 3 5 8 | S N | រុកុស | ង្គង់ | 72 | 777 | 757 | 31627 -13.
32147 -12.
32629 -11. | 유한병 | 44 | 440 | 77' | ~ € | 4 M 4 | | | 3150 | .41126 | 8 8 | 5 _ | 45332 | 31188 | 623 | \$4466
\$4466 | | -1.47295E+00
-1.47131E+00
-1.46965E+00
-1.46799E+00 | -1.46472E
-1.46316E
-1.46166E | -1.46024E+
-1.45893E+
3E AXIAL D | E | | | | | | | | | | | .6000
.6222
.4444 | | | | | | | - | N Y-D(DEG) | 우류 | ង់ដំរ | * | | 7 | 65783 -1- | 777 | Ŧ · | | **** | 282 | 30 -1
31 -1
EADTNG EDGE | F. | -uu
889 | | | : K K | 223 | :23
:24 | 785
HE4 | 828 | 222
*** | 22 % 22
22 % 22 | ###
| *** | er. | 8 P. P. | 8 | at:
ei | : # #
: # # | TA POINTS | INT FRAC. | ~ u
8 k | 3 .40145
4 .600 9 4
80023 | | | | ,,,,
,,,, | | | | | | 3 | ٤ | | | | | | | | | | | | | | | | | | T.M. | 2 | | | • | | | | | | | | | • | • | | | | | | | | | | | | | | | | | - | • | - | 6 × | 667B3E-01
02704E-01
40332E-01 | 79700E-01
20838E-01
63775E-01 | 08554E-01
55182E-01 | 54072E-01 | 16779E-01
16779E-01
48940E-02 | 49593E-02
02313E-03 | 31312E-02
05279E-01 | 35507E-01
63834E-01 | 14840E-01
37544E-01 | 77399E-01 | 23565E-01 | -3.45393E-01
-3.53641E-01
-3.6013E-01 | 64810E-01
67732E-01 | OLT | 68877E-01
68243E-01 | 65825E-01
61618E-01
55620E-01 | 47829E-01 |
13717E-01
98780E-01
82069E-01 | | | | | | | | | | | | CENTROLD | (X) AXIS) | | E+88 | 868 | 885 | 5 5 5 | | , b | 17.1 | 777 | 222 | 7 7 7
10 7 7 | 555 | 222 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | i, i, | i, ii, ii | ų ų, | 2445 | ě | | | | | | | | | | | AREA ABOUT | HTIW 170. | SURFACE- | 777 | 777 | 771 | 17.7 | 7 17 7 | 7 7 | 177 | 777 | | | .,,, | 4.95256E-01
5.64647E-01
6.34004E-01 | | SURFACE | | | | 1.38552E+00
1.45191E+00 | ~ | | 2 G
2 G
2 G | . 69202E-01
. 7057BE-01 | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 6 4 6
6 6 6
6 6 6
6 7 8 | 9E-01
5E-01 | # # #
6 6 6
6 6 6 6 | # # P | 06-01
76-01 | | 75
PO 87 | 55 | | 90875E-01
(2458E-01
95886E-01 | 51120E-01
38118E-01
3836E-01 | 27211E-01
19213E-01 | 17887E-01 | 21730E-01
72331E-01 | 64156E-01
77136E-01 | 96275E-01
52297E-01 | 39190E-01
168B7E-01
17229E-02 | 14445E-02 | 54516E-02
79070E-03 | 1092BE-02
35603E-02
14944E-02 | . 19026E-02
. 77767E-02
. 031 18E-01 | 17924E-01
1218BE-01 | | 15902E-01 | 71638E-01
33639E-01
35045E-01 | 05845E-01
1602BE-01 | .34498E-01 | | > | ~~ | | | | ~ ~ | ~~~ | ~~ | | | = 4.6414ZE-02
= 3.35137E-01
=-1.13364E-01
AL SECOND MOMENTS | 7.22290E-03
3.74329E-01 | | ~ ~ ~ | | 1044 | THI | 7 M N | | 4 | | - NO 1 | n – h | 4 to te | 777 | 77 | | 77 | 777 | 44 | 4444 | . 3 | * | 47967E+00 | .48195E+00
.48289E+00 | 48431E+00
48477E+00 | . 48507E+0
48519E+0
48514E+00 | 48452E+00 | .48396E+0(
48324E+0(
48236E+00 | 48135E+00
48020E+00 | 477893E+0C | | IX = 4
IY = 3
IXY =-1
PRINCIPAL S | 1PX - 7 | SURFACE- | -1.458938
-1.38636E
-1.31416E | -1.24235E
-1.17097E
-1.10003E | -1.029568
-9.59558E | -8.21005t | -6.16774E
-5.49616E | -4.82888t | -2.85044E
-2.19778E | -1.54800E
-9.00851E | 3.86360E | 2.30261E
2.93839E | 3.57311E
4.20700E
4.84035F | 5.47346E-01
6.10661E-01
6.74012E-01 | 7.37426E | SURFACE. | 8.64570E
9.28363E | 9.92346E
1.05656E
1.12103E | 1.18580E | 1.31639E+00
1.38227E+00
1.44858E+00 | TS DESCRIBING | 8 | 77 | 777
n+1 | 77 | 777 | 77 | 777 | 77 | 77 | | £ | | £ 9 | | | | | | | | | | 2 % 2 | 88 5 | ### | 44 | £ 2 | | | | 3 1 4 2 | 2 | POINT | | - | - | ā | | | | | | .2444421482 -36.82659 1.03848 | | IPY = .00591 (AT-28.885 WITH (Y) A | | |---|----------|---|---| | 13 .2666723120 -35.97623 1.02280 1.8448 | POINT | THE A MILINE DATA SURFACE COORDINATE DATA | *> 47 ** 1905153333-15.066 .04158 .9159251325 .90511553 | | .3111126247 -34.26891 .97926 | | | ACCC 4777 - 7874 - 7874 - 774 - 11-01-01-0 | | 27737 -33,42080 .95140 | . 02 | .00572 .00000-45.297 .01143 .00978 .00402 .00165004 | /5775. /Bock. certo. 6/6.91-21926. BC269. | | POINT FRAC. M Y Y-D(DEG) Y-DD R OF CURV | ~ | .0277802203-44.606 .01839 .0342401549 .02133028 | 44 .9546554464-13.678 .02718 .9578653143 .95143557 | | 29180 -32.58283 .91948 | P | .0498504353-43.899 .02523 .0586003444 .04110052 | 45 97672 54986-12. 979 . 01947 . 97890 54038 . 97453 559 | | . 37778 30578 - 31.76016
40000 - 71972 - 30.95820 | •
• | 67192 06450-43, 176 . 03193 . 08285 05286 . 06100 | -> 35 +6 .9987855481-12.277 .01143 1.0000054922 .99757560 | | . 42222 33245 - 30.18140 . 80324 | · 15 | | N MOTTER TO TO 19 (BAT MINOR) | | .4444434518 -29.42896 .76726
.4666735752 -28.69838 .73553 | · | 08495-42,436 .03846 .1069707075 .08101 | 5 | | . 48889 - 36951 - 27.98687 . 70805 | | .1160610486-41.680 .04480 .1309508813 .10116121 | DIMENSIONAL RESULTS - ALL RESULTS REFER TO A BLADE OF SPECIFIED | | .5333339245 -26.60848 .66583 | , | .1381312424-40.908 .05090 .1547910501 .12146143 | инениеминениеминениеминениеминениеминемин | | .5555640341 -25.93473 .65109 | ÷ | 441 - 06141 | BLADE CHORD • 3.319452+00 | | .6000042439 -24.59931 .63435 | • | O. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | .6222243441 -23.93022 .63024 | • | .1822616144-39.31B .06237 .2020213731 .162501B5 | L.E.RADIUS = 1.65923E-02 CENTERED AT I= -1.4034E+00 Y= 1.0018E+00 | | .6666745351 -22.58448 .62203 | 20 | .2043317925-38.501 .06770 .2254015276 .18326205 | SECTION AREA 7.02919E-01 | | . 68889 46260 -21.90825 . 61793
. 71111 47139 -21.23009 . 61382 | :
: | .2264019655-37.669 .07273 .2486216776 .20417225 | SECOND MONENTS OF AREA ABOUT CENTROID | | .7333347987 -20.55020 .60973 | ÷ 3 | 2020 TTC8: - 82170 3270 778 27-37710 - | 1x = 1.02477E-01 | | .7777849593 -19.18620 .60153 | :
: | C7077. CC1991. D01/1. CF//O. /18.00_50517. | IY = 3.23082E-01 | | .8000050352 -18.50256 .59743
8222251081 -17.81805 .50357 | • 22 | .2705322940-35.976 .08185 .2945719648 .24649262 | | | .844451780 -17.13247 .59016 | | | PRINCIPAL SECOND MONENTS OF AREA ABOUT CENTROID | | 40 .866752451 -16.44552 .58721 1.9303
41 .8888953092 -15.75689 .58471 1.9185 | NUTBER | TEANLINE DATA SURFACE COOKDINATE DATA R X Y ANGLE THICKNESS X1 Y1 X2 Y2 | IPX = 5.9566E-03 (AT-28.885 WITH (X) AXIS) | | .9111153705 -15.06626 .58267 | - | .2904024537-75.122 .08591 .3173221024 .26789280 | - 4.19602E-01 (AT-ZB.BES WITH (T) | | .9555654844 -13.67762 .57994 | 200 | | PT SURFACETAO | | -12.97892 .57926
-12.27683 .57903 | SE 89 - | .08%63 .33%9022361 .2B%44 | | | | 2 | .3367427545-33.421 .09299 .3623523664 .31113314 | -1.39161E+00 1.01352E+00 -1.41519E+00 9 | | DATA POINTS | 2, 69 | .35881 -,28978-32,583 .09598 .38465 -,24934 .33296330 | -1.24989E+00 9.01872E-01 -1.30068E+00 B | | POINT FRAC. H Y-D(DEG) | •> 22 | .3808830366-31,760 .09860 .4068226174 .35493345 | -1.17952E+00 8.4841ZE-01 -1.24294E+00 7
-1.10951E+00 7.9648ZE-01 -1.18484E+00 7 | | 1 .00000 -45.29691 | • 28 | | -1.03988E+00 7.46045E-01 -1.12635E+00 6 | | 2 .2017 -38.45756
3 .40074 -30.93186 | . 34 | .4029431711-30.958 .10084 .4288827387 .37701360 | -9.01917E-01 6.49476E-01 -1.06/47E-00 5 | | 4 .60008 -24.59692 | 8 | .4250133014-30.181 .10268 .4508228576 .39920374 | -8.33595E-01 6.03286E-01 -9.48309E-01 4 -7.65730E-01 5.58441E-01 -8.88062E-01 4 | | 5 ./79/4 -18.51055
6 1.00000 -12.27683 | | .4470834278-29.429 .10413 .4726629744 .42150388 | -6.98532E-01 5.14901E-01 -8.27349E-01 3 | | STREATSURFACE GEOVETRY ON STREATLINE MUIBER 3 | 2 22 | .4691535505-28.698 .10517 .4944030892 .44390401 | -6.31409E-01 4.72611E-01 -7.66159E-01 2 -5.64949E-01 4.31533E-01 -7.04508E-01 2 | | | • 17 | 10000 - 10119 - 4020 - 100 to 30110 | -4.98942E-01 3.91609E-01 -6.42404E-01 1 | | | 99 ^= | OLDON: 17075: 10016: 4/501: /04:/7-6406:- | -3.68230E-01 3.14967E-01 -5.16892E-01 8 | | | - | .5132837851-27.291 .10598 .5375833141 .48899425 | -3.03491E-01 2.78101E-01 -4.53519E-01 4 -2.39128E-01 2.42108E-01 -3.89771E-01 -1 | | | | .53535 -,38973-26.608 ,10574 ,55903 -,34245 ,51167 -,437 | -1.75112E-01 2.06897E-01 -3.25675E-01 -4 | | 25500 (LOCATION OF MAX. THICK. AS A FRACTION OF MEAN LINE)
CORD - 2.9026 (MERIDIONAL CHORD OF SECTION) | | .5574240062-25.935 .10508 .5804035337 .53444447 | -4.80282E-02 1.38498E-01 | | A OT STATE OF THE PARTY | • | 37944 - 41119-25.26 .10400 .60168 - 36417 .55730 - 458 | 1.50657E-02 1.05154E-01 -1.31518E-01 -1
7.78754E-02 7.22997E-02 -6.62161E-02 -1 | | BLADE HAVING A HERIDIOWAL CHORD PROJECTION OF UNITY | ; ;
; | CONTRACT VARIOUS CONTRACTOR AND | 1.40410E-01 3.98726E-02 -6.38322E-04 -2 | | KKKA KKKA KAKA KOMA KAKA KKAKA KKAKA KAKA | \$ 50 - | 7700C: COL/C: /0770: OC701: //C:L7-CL17L: | 2.64693E-01 -2.3BSB6E-02 1.31302E-01 -2 | | BLADE CHORD = 1.1433 | \$
? | .6236343140-23.930 .10060 .6440338542 .60322477 | 3.26474E-01 -5.52012E-02 1.97632E-01 -3
3.88034E-01 -8.62105E-02 2.64184E-01 -3 | | STAGGER ANGLE =-29.191 | | .6456944104-23.259 .09831 .6651039588 .62628486 | 4.49338E-01 -1.16891E-01 3.30941E-01 -3
5.10539E-01 -1.47248E-01 3.97822E-01
-4 | | CAMBER ANGLE =-33.020 | #
} | .6677645037-22.584 .09561 .6861240623 .64940494 | 5.71569E-01 -1.77287E-01 4.64984E-01 -4.33533E- | | SECTION AREA 08343 | 7 | .6896345940-21.908 .09254 .7070941647 .67257502 | 3642XE-01 5.99571E-01 -4.77450E- | | LOCATION OF CENTROID RELATIVE TO LEADING EDGE | :
: | .7119044812-21.230 .08908 .7280342640 .69577509 | 7.53875E-01 -2.65533E-01 6.67013E-01 -4.97236E-
B.14476E-01 -2.94344E-01 7.34524E-01 -5.15386E- | | XBAR48921
YPAR44515 | | 47654-20.550 .08525 .7489343663 .71900 | SURFACE | | CINCING STATE OF STATE OF STATES | ÷ | 48467-19. B69 | ×
> | | • | £ . | 1991 01791 - 17001 17700 700 01-0100 - | 8.75030E-01 -3.22861E-01 B.02081E-01 | | 1x = .00144
1y = .00455 | 8
• | | 9.96090E-01 -3.79016E-01 9.37245E-01 | | • | £ \$ | 50003-18.503 .07154 .8115246610 .78882 | 1.05663E+00 -4.06667E-01 1.00481E+00
1.11722E+00 -4.34036E-01 1.07234E+00 | | ANGLE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS =-28,885 | 2 | .8222450727-17.818 .06625 .8323847573 .81210538 | 41 1.17786E+00 -4.61125E-01 1.13981E+00 -5.9598E-01 42 1.23838E+00 -4.87929E-01 1.20720E+00 -4.0470E-01 | | PRINCIPAL SECOND MOMENTS OF AREA ABOUT CENTROID | 8 | .8443151421-17.132 .06061 .8532348525 .83538543 | 1.29939E+00 -5.14454E-01 1.27450E+00 | | (X) AXIS) (AT-28.885 WITH (X) AXIS) | \$
14 | .8643852087-16.446 .05461 .8741149468 .85865547 | 1.42141E+00 -5.46664E-01 1.40871E+00 | | | | | 47 - 6 20 | | .21904 -1.42249 .99448
.21931 -1.42229 .99448
.21942 -1.42728 .99448
.21945 -1.42728 .99453
.22022 -1.42299 .99421 | 1.4273
-1.42125
-1.41988
-1.41861 | E 4 ITENTION 1 DEVIATION = 5.372 SOLIDITY = 1.995
ITENTION 2 DEVIATION = 5.558 SOLIDITY = 1.8419
ITENTION 2 DEVIATION = 5.538 SOLIDITY = 1.8419 | M Y Y-D(DEG) Y-DO R OF | .00000 -49.26162 .97922 3.
02556 -48.72485 .97928 3.
- 04047 -48.17631 .97945 3. | 07523 -47.61565 .97973 3.
09533 -47.04249 .98013 3. | -,122% -46,4547 ,980%5 3,
-,14610 -45,85721 ,98128 3,
-,14878 -45,24472 ,98202 2, | -,19092 -44,61739 .98288 2.
-,21261 -43,97602 .98386 2. | 2223381 -43.33041 .98216 2.6440
4425452 -42.65250 .97466 2.5791
6727475 -41.97930 .96135 2.5321 | 29451 -41.30217 .94223 2.
31380 -40.62682 .91731 2.
17208 -70 65477 .86458 2. | Y Y-D(DEG) Y-DD R OF | 35105 -39.30223 .85005 2.
36903 -38.66418 .80771 2. | -,3862 -38,05030 ,75756 2,
-,40383 -37,46548 ,71100 2,
-,42069 -36,90880 ,66768 2, | 45721 -36.37748 .62959 3.
45343 -35.86846 .59674 3. | -,46935 -35,37843 .56912 3.
-,48500 -34,90378 .54674 3.
-,50037 -34,44069 .52960 3. | 51548 -33,98514 .51769 3. | 55493 -33.08029 .50675 3.
55928 -32.62701 .50217 3.
5733 -32.17341 .49726 3. | 58724 -31.71991 .49204 3.
60086 -31.26694 .48650 3 | 61423 -30.81472 | 65329 -29.46919 .46116 3.
66538 -29.02544 .45459 3. | 70138 -27.70507 .43952 3 | 11 -,712-9 - 27,226-7 -,430-4 1,26-4
33 -,724-9 -26,287-5 -,4333 1,2475
56 -,735-2 -26,387-5 -,431-6 3,22-6 | 74634 -25.94571 .43024 3.
75704 -25.50138 .42985 3. | | H Y-D(DES) | 00 -49, 26162
 67 -47, 26457
 18 0.47, 18 0.47 | 80 - 33, 53,688
68 - 29, 4755 | 00 -25,50138
E GEOPETRY ON STREAMLINE MANBER 4 | | CHADE CUTLET MALE) (BLADE LEADING EDGE RADIUS AS A FRACTION OF CHORD) | | CHEMINA OF THAT, INTER, NO PROPERTY OF TERM EAST. | |--|---|---|------------------------------|--|---|---|--|---|---|---|--|--|--|---|--|--|---|--|--|--|--|--|---|--
--|---|--|--|---|--------------------------------|---| | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | **** | STREMISURFACE | POINT FRAC. | 1 2 5
220. | 4 R | • • • | 01777 | 11 .22222 11 .24444 12 .24444 | 15 . 3111 | POINT FRAC. H | | | | | | | | | | | 42 .91111
42 .9333
44 .9555 | _ | DATA POINTS | POINT FRAC. M | 1 .00000 .
2 .20067 - | 1665. | 6 1.000K | MOCKAROLMOCK | META2 =-25.501
YZERO = .00500 | TYONE | | | 1
DATA POINTS
POINT FRAC. H Y-D(DEE) | 1 .00000 -45.29691
2 .2017 - 28.45756
3 .40074 - 20.9186
4 .60008 -24.59692 | .79974 -18
1.00000 -12
ESIAN COORDINA | Z1 X1 Y1 Z2 X2 | -1.41861 .99014 4.22376 -1.44183
-1.34872 .93715 4.24907 -1.38562 | -1.27911 1895.37 4.2752 -1.27911
-1.20980 183484 4.29541 -1.27226
-1.14081 78548 4.31659 -1.21504 | -1.07217 .73724 4.33649 -1.15742
-1.00390 .69013 4.33515 -1.09933 | - 18649 | 7344 .51297 4.4180186231
66834 .47138 4.4309280178
47244 43088 4.448974075 | -,53699 ,39139 4,45377 -,67923 -,47194 ,35289 4,46388 -,61724 -,61724 | 16 4-8138 - 40727 - 313-27 4,475-17 1,53-59 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | -,21549 ,20738 4,49733 -,36503 -
-,15222 ,17281 4,50435 -,30106 -
-,08923 ,13878 4,51096 -,23677 - | 02653 . 10526 4.5172317219
. 03590 . 07219 4.5231910731 | . 15997 | . 28308 05655 4, 54459 . 15495 34432 08794 4, 54947 . 22113 | . 52690 - 18026 4,5634 . 42087 - | . 58747 21047 4, 56802 . 48776 64791 24038 4, 57264 . 55476 | . 7685329933 4.58221 .68901 | . 94909 - 35719 4.59251 . 82341 - 94909 - 38571 4.59805 . 89060 - 1.00925 - 41397 4.60388 .95776 - | 1.1296946970 4.61633 1.09189 - | 1.35040457.19 4.62673 1.15887 -
1.2504052439 4.62976 1.22568 -
1.3109255132 4.63681 1.29239 - | 1.3715757796 4.64406 1.35896
1.4323860426 4.65149 1.42537 | POINT ZSENI XSENI YSENI | -1.44183 | -1.44396 | -1.44530 | -1.44653 | -1.44634 | -1.4544 | 14 4.21817 -1.4428 .9849
15 4.21857 -1.4428 .9849
16 4.21889 -1.4431 .98976 | -1.44043 | -1.43756 | | 46 1.48264E+00 -5.92348E-01 1.47859E+00 -6.24771E-01 POINTS DESCRIBING LEADING EDGE RADIUS POINT NO. X Y | 1 -1.41519E+00 9.90173E-01
2 -1.41633E+00 9.91472E-01
3 -1.4172E+00 9.92882E-01
4 -1.4182ZE+00 9.44391E-01 | TTTT | -1.41996E+00
-1.41977E+00 | -1.41886€+00 | -1.41727E+00
-1.41624E+00
-1.41507E+00 | -1.41377E+00
-1.41236E+00 | -1.410B5E+00
-1.40926E+00
-1.40741E+00 | -1.40591E+00
-1.4041BE+00 | -1.40072E+00
-1.39902E+00 | .39737E+00
.39579E+00
.39429E+00 | -1.39289E+00
-1.39161E+00
IG EDGE AXIAL DIFFER | | T FRAC. II T T-DIBES T-DU R UT | .0222202219 -44.60616 1.08304 2.044404384 -43.89900 1.08208 2 | .0666706495 -43.17550 1.08050 2
.0888908554 -42.43576 1.07828 2
.111110559 -41.67963 1.07542 2 | 12511 -40.90823 1.07193 2
14410 -40.12092 1.06781 | . 20200 - 16256 -39.31834 1.06305 | . 24444 21482 - 36.82659 1.03848 1
. 26667 23120 - 35.97623 1.02280 1 | . 3111126247 - 34.26891 . 97926 1
. 3333327737 - 33.42080 . 95140 1 | 13556 - 129180 - 1258283 . 91948 1 1 17713 . 91948 1 1 17713 . 130578 - 11,76016 . 184350 1 1 1446 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20 . 4222213245 -30,18140 . 80324 1,9273
21 . 444434518 - 24,42394 . 16724 1,9727
22 . 444219479 - 28,48394 . 72832 2,0145 | . 4888936951 -27.98687 .70805 2 .5111138115 -27.29134 .68481 2 | .55131319245 -26.60848 .66583 2
.5555640241 -25.93473 .65109 2 | 5/7/8 - 141406 - 125.22506 - 124.795 - 125.000 - 124.739 - 124.739 - 124.739 - 124.739 - 124.73 - 124. | . 64444 44412 -22.25854 . 62613 2 . 66667 45351 -22.58448 . 62203 | . 68889 46260 -21.90825 . 61793 2
.71111 47139 -21.23009 . 61382 2 | 75555 - 48805 - 40.5557.
75556 - 48805 - 40.5557.
75758 - 48805 - 40.8857. | . 8000050352 -18.50254 .89743 19.5025251081 -17.81805 .59357 1 | .8646751780 -17.13247 .59016 1
.8646752451 -16.44552 .58721 1 | 91111 - 52705 -15.06626 -58267 | . 95556 - 54844 -13.67762 . 57994 1 | | | NORTIAL! | NORMALIZED RESULTS - ALL THE FOLLDWING REFER TO A
BLADE HAVING A HERIDIOWAL CHORD PROJECTION OF UNITY | • | £ | | 51087-33.985 | | • | | | នុង | 9.57543E-02
1.56199E-01 | 7.28524E-02
2.99130E-02 | -8.63900E-02
-2.41326E-02 | 777 | 79062E-01
24040E-01 | | | |---|-----------
--|------------|-------------|--------------------------------|----------------------------------|------------------------------|------------------------------------|-----------|------------|--------------|-----------------------------|----------------------------|------------------------------|---------------|---|----|--------------| | | MACHEMINA | ean indeath in | 99 | Ħ | .600885% | 52559-33.533 | .10818 | .6307748050 | 57100 | | K 18 | 2.16304E-01
2.7607BE-01 | 7 7 | | 77 | 050E-01 | | | | | BLADE | BLADE CHORD = 1.2493 | 1 | æ | .62291 | 54006-33.080 | . 10619 | .6518949557 | 57 .59393 | 3584 | 2.2 | 3.355326-01 | 7 7 | | 77 | 148E-01
007E-01 | | | | | STAGE | STAGGER ANGLE =-37.127 | 8 8 | R | .6449359 | 55428-32.627 | . 10377 | .6729151059 | 59 .61696 | 6597 | 121 | 4.535146-01 | 71 | | T | 643E-01 | | | | | CATBE | CARBER ANGLE =-23.760 | R | Ħ | | 56826-32.173 | .10094 | .6938352554 | 54 .64008 | 9 610 | 3 គ រ | 5.70352E-01 | | | 7 | 272E-01 | | | | | 1235 | 110N AREA 09573 | 8 | Ħ | 35'- 86889' | 58199-31.720 | . 07700. | .7146654044 | 44 .66330 | 229'- 0 | RR | 6. ZB3B7E-01
6.86189E-01 | 77 | | 7 | 096E-01 | | | | | 5 | LOCATION OF CENTROID RELATIVE TO LEADING EDGE | • 88 | Ħ | | 59549-31.267 | | | | | # | 7.43773E-01
8.01157E-01 | 77 | | 77 | . 36169E-01 | | | | | | XBAR = .46909 | \$
• | ř | | 60874-30, 815 | | | | | E | SURFACE | ı | | ¥ | OFT- | | | | | | 70001 | • | | | 25 OL-32107 | | | | | 2 | * | > - | * | | - | | | | | B | SECURE FURENCE OF PRES MECOL LENINGLE | \$
• | 8 | | 100.00 | | | | | | 8.5835E-01 | T | | φ, | 446E-01 | | | | | | IX = .00294
IY = .00521 | • 56 | ጸ | | 63455-29.916 | | | • | | | 9.72263E-01 | 7 | | 7 | 539E-01 | | | | | | IXY =00382 | • | A | .799106 | 64711-29.469 | . 07559 | .8176961420 | 20 .78050 | 089 0 | | 1.02300E+00
1.08560E+00 | 7 | | 7 | 371E-01 | | | | | PNGL | ANGLE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS =-36.731 | | R | .821126 | 65944-29.025 | . 07002 | .83811 6 2883 | 83 .80413 | 2690 | | 1.14209E+00 | 77 | | 7 7 | 656E-01 | | | | | PRIN | PRINCIPAL SECOND HONENTS OF AREA ABOUT CENTROID | s : | ñ | .8431567 | -,67155-28.584 | .06408 | .8584764341 | 41 .82782 | 669 2 | | 1.25477E+00 | | | 99 | 501E-01 | | | | | | IPX = .00009 (AT-36.731 WITH (X) AXIS) | 3 3 | \$ | 61298. | 68344-28.144 | . 77750. | .B787965797 | 97 .85154 | 907 4 | . 6 2 | 1.36714E+00 | | 1.34166E+00 | 4 | .87940E-01 | | | | | | IPT = .00807 (AT-36.731 WI | ;
; | 7 | .61789 | 69511-27.705 | .05111 | .8990767249 | 49 .87531 | 1717 | 2 | | ' ' | | • | | | | | | POINT | TEANLINEDATA SURFACE CORDINATE DATA X X Y ANGLE THICKNESS XI YI XZ YZ | * | 42 | .9092270 | 70657-27.266 | .04408 | .9193168698 | 98 .B9912 | 2726 | STNIO | DESCRIB | LEADING EDG | KADIOS | | | | | | | - | .00625 .00000-49.262 .01249 .01 | : | Ş | .931247 | 71781-26.828 | . 03671 | .9395270144 | . 922% | 6 734 | POINT | ġ | | _ | | | | | | 80 🕶 | | 20000 - 672TO - 10010 - 20100- | • | 1 | | 72965-24.398 | | | | 2741 | | 1 -1 138 | | 37E+00
B1E+00 | | | | | | •
• | | | • 83 | : \$ | | 716.Y-X 94. | | | | | . • | 1.360 | | 136E+00 | | | | | | • | • | 82010: 22110: 16090: BB920: 9/1:BF-81060:- | • 07 | P | | | | | | | | -1.361 | | 71E+00 | | | | | | | + | .0723207455-47.616 .03388 .0848306313 .05980085 | 1 | ‡ | 15766. | 75028-25.501 | .01249 1. | 1.0000074464 | 64 .99462 | 2755 | | 7 -1.362 | | 78E+00 | | | | | | · • • • • • • • • • • • • • • • • • • • | ın | .0943409845-47.042 .04071 .1092408458 .07944112 | | | | | NORTAL 1 | WLISED PLOT OF | SECTION | NUMBER | - | -1.362 | | 116+00 | | | | | | • 35 | • | | ÷ | | | | | | | | ã | 77 | | 71E+00 | | | | | | • 17 | , , | C | - | DIFENSIONAL | RESULTS | - ALL RESULTS | S REFER TO | A BLADE OF | SPECIFIED | CHORD | - 4 | 77 | | 46E+00
15E+00 | | | | | | • 51 | ٠ ، | 2021 /9/CI. F/CO. | | 1 | | * 48008E+00 | | | | | | 77 | | 75E+00
26E+00 | | | | | | 3 | 0 | 11/21: 91911: DelB1: 04/00: | | | | | : | | | | | 77 | | 65E+00 | | | | | | • 63 | • | .06579 .2055416580 .15933 | | L.E.PADIUS | • | Ŗ | CENTERED AT X= | = -1.3450E+00 Y= | | 1.198/E+00 | | 77 | | 02E+00 | | | | | | 3 4 | 2 | .2044621071-43.976 .07139 .2292518502 .17967236 | | SECTION | N AREA= 7.42849E | 949E-01 | | | | | | 77 | | 198E+00
177E+00 | | | | | | • | = | .2264823172-43.320 .07669 .2527920382 .20017259 | | SECOND | HOMENTS OF AREA | ABOUT | CENTROID | | | | N N | 77 | | 39E+00
82E+00 | | | | | | • | 73 | .2485125225-42.654 .08166 .2761722222 .22084282 | | ** | 1.77235E-01 | Şē | | | | | NN | 77 | | 12E+00 | | | | | | | ŭ | .2705327230-41.979 .08629 .2993924022 .24167304 | | Ě | | Ş | | | | | NÑ | 77 | | 39E+00 | | | | | | ì | | | | PRINCI | PRINCIPAL SECOND MOYENTS | 6 | AREA ABOUT CE | CENTROID | | | W W | 77 | | 115E+00
146E+00 | | | | | | | NUMBER | X A WELE THICKNESS X | | Ä | • 5.40113E-03
• 4.85824E-01 | -03 (AT-36.73)
-01 (AT-36.73) | CO HTIM IST | X) AXIS) | | | NÑ | 29 -1.336 | .33400E+00 1.213 | 1.21360E+00
1.21257E+00 | | | | | | 1 | ± | .2925529188-41.302 .09058 .3224525786 .26266325 | | _ | | 30 | URFA | ì | | | nй | 77 | | 39E+00
08E+00 | | | | | | ? ; | ŭ | .3145831100-40.627 .09450 .3453427514 .28381346 | | 2 | × | > | × | | | _ | LEADI | | | 0443 | 7 | DELX • | ¥. | | | £ 1 | 2 | .3360 -,32967-39,958 ,09804 ,36808 -,29210 ,30512 -,367 | | 1-1-2 | | 2100EF+00
14630E+00 | -1.35822E+C | | 8 4 6 | | POINT | T FRMC. H | Y Y-D(| Y-D (DEG) Y-DO | 8 | CURV | | | | | 11 | .3586234791-39.302 .10120 .3906830876 .32657387 | | 77 | | 08390E+00
02285E+00 | -1.25023E+(| | F+00 | | - | 00000 | .00000 -49.2 | ٠ | n | 742 | | | | • | 9 | .3806536573-38.664 .10397 .4131332514 .34817406 | | - T | | 63124E-01 | -1.14113E+(| | E-01 | | N N | 2220 | 02556 -48.1 | • | n n | 572
431 | | | | 22 | 2 | .4026738316-38.050 .10634 .4354434129 .36990425 | | 7 | | 47514E-01 | -1.03065E+(| | 10-1 | | 4 10 | 0.06667 | 07523 -47.61565 | • | 'nй | 321 | | | | • 03 | 8 | .4247040022-37.465 .10829 .4576335724 .39176443 | | -7.5 | | | -9.18589E-0 | | 10-1 | | • | 11111 | 122% -46.4 | • | 'nй | . e e e e e e e e e e e e e e e e e e e | | | | 20 | 2 | .4467241693-36.909 .10983 .4797037302 .41374460 | | | | | -8.04813E-0 | | 1 T | | | 1555 | 16875 -45.3 | | N N | 174 | | | | - 83 | a | 777 38854 3885 391093 5010 773-1525 778-94. | | 2.5 | | | -6.89216E-0 | | | | 2 = | 20000 | 21261 -43.9 | • | 10 10 | 2.4
5.4 | | | | ? | ĸ | .4907744938-33.868 .11159 .5234640416 .45807494 | | 1 | • | | -5.71824E-0 | | 500 | | 22 | 2444 | 25452 -42.4 | | <i>(</i> 10) | 191 | | | | 9
• | \$ | .5127946516-35.378 .11181 .5451641958 .48042510 | | 17: | | | -4.52709E- | | 56 | | 4 2 | 2888 | 29451 -41.1 | | 101 10 | n n | | I | | * : | ĸ | .53481 -,48066-34,904 .11157 .56673 -,43491 .50289526 | | 777 | • • • • • • | 47989E-01 | -3.32009E-(| | 22 | | 22 | 3555 | -, 33265 -39, 95837 | | 88658 2.8 | 5045 | | <u> 14</u> P | | ; ; | % | .5568449590-34.441 .11088 .5881945017 .52548541 | | 22 | . 61538E-02 1. | . 59615E-01 | -2.09865E-01
-1.46307E-01 | 01 -8.50139E-02
01 -1.32730E-01 | E-02 | | 22 | .4000 | 36903 -38.0
38662 -38.0 | • | N N | .007
1961 | | RINT | | 78 (- | | RESULTS. OUT 6-25-95 10:23a | | | 1 | | | | | | Page | 19 of | 8 | | | | | ١ | Page 20 of 32 | 42 . 91111@796 - 26, 4472335482 5.3842
43 .95332@904184, 18252 1.35439 5.3300
449835691216 - 28, 18853935608 5.2747 | 1,000094393 -35.3564 .35389 5
1.000094393 -35.2554 .35583 5 | DATA POINTS | POINT FRAC. M Y-D(DES) | 1 .00000 -52.67686
2 .20052 -48.49072 | 3 .40013 -43.77368
4 .59975 -40.49102 | 5 .79948 -37.90050
6 1.00000 -35.25544 | | BETA1 =-52.677 (BLADE INLET ANGLE) | | .08430 | Z = .5500 (LOCATION OF MAX. THICK. AS A FRACTION OF YEAN LINE) CORD =
2.6528 (MEXIDIONAL CHORD OF SECTION) | NORMALIZED RESULTS - ALL THE FOLLOWING REFER TO A | BLADE HAVING A MERIDIONAL CHORD PROJECTION OF UNITY HANN KNEW KNEW KNEW KNEW KNEW KNEW KNEW KN | BLADE CHORD = 1.3671 | STAGGER ANGLE *-43.348 | | SECTION AREA = , 10801 | LOCATION OF CENTROID RELATIVE TO LEADING EDGE | XBAR = .49120
YBAR = -,51408 | SECOND NOMENTS OF AREA ABOUT CENTROID | 1X • .00512 | IY = .00591
IX =00540 | ANGLE OF INCLINATION OF CONE) PRINCIPAL AXIS TO (X) AXIS =-42,900 | PRINCIPAL SECOND MOMENTS OF AREA ABOUT CENTROID | IPX = .00010 (AT-42.900 WITH (X) AXIS) IPY = .01093 (AT-42.900 WITH (Y) AXIS) | HEANLINE ! | . 00.484 .00000-57.477 .01767 .0 | 02050 - 02219 - 02062 - 02062 - 02062 | OKTON - 04470-K1 873 07819 - 04188 - 04808 03972 | .0727808453-51.383 .03526 .0865607353 .05901 | 5 .0947711183-50.932 .04218 .1111409854 .07839 | 68-50. 11575 - 13369-50.471 .04890 .13561 - 12313 .09789 | 7 13873 - 16511-49,999 05540 15995 - 14730 11751 | 8 .1607119108-49.513 .06166 .1841617107 .13727 | 9 .1827021661-49.015 .06766 .2082319442 .15716 | 20711. 82112 31222. 822.0. 2021864.502. | 0781. 25651 52523. 07870. 07879 525593 52679. | 7110 VICTO - APORT GRANDO ANT ATTACANT TOUTE | 25. 0/12. U120. 257/2. B0500. /5+/+/+UV2. 40042. | A 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | POINT MEANLINEDATA SURFACE CORDINATE DATA MARKE THICKNESS X1 V1 12 Y2 | | |-----------------------------|---|--|--|--|--|---|--|--|------------------------------------|--|--|--|---|--|--|------------------------|--|--------------------------|---|--|---------------------------------------|--|--|--|--|---|--|----------------------------------|--|--|---|---|--|---|--|--|---|---|--|--|--|--|-----------------| | | 45 5.20733 1.31747B4342 5.19621 1.29212B9471
46 5.20627 1.37330B8371 5.19945 1.3583991448 | POINT 25EM X5EM Y5EM | -1.39243 | 1.1944 | 1.39587 | 7 4.85022 -1.39454 1.17301
8 4.84979 -1.39460 1.17478 | -1.39446 1.17655
-1.39614 1.17830 | 4.84867 -1.39564 1
4.84837 -1.39495 1 | -1.39410 | 4.84745 -1.39192 1
4.84745 -1.39042 1 | 4.84760 -1.38920 1
4.84760 -1.38766 1 | 4.84765 -1.38604 1
4.84775 -1.38435 1 | 4.84791 -1.38260 1
4.84812 -1.38081 1 | 4.84638 -1.37901 1
4.84868 -1.37721 1 | 4.84902 -1.37544 1
4.84940 -1.37371 1 | 4.85025 -1.37204 1 | | 4.85170 -1.36635 1.18598 | STREMESURFACE S ITERATION 1 DEVIATION = 4.549 SOLIDITY = 1.8379 ITERATION 2 DEVIATION = 4.711 SOLIDITY = 1.7142 | 2 DEVIATION - 4.711 SOLIDITY - | Y Y-D(DEG) | . 00000 . 00000 -52.67686 . 89381 5 . 02222 02893 -52.25440 . 89426 4 | 05741 -51.82330 .89561 + | . 0888911305 -50.93246 .90102 4
.1111114020 -50.47128 .90508 4 | D 06016 | . 17778 11897 - 49.01306 - 72226 - 3.
- 22422 24432 - 48.59247 - 93032 - 3.
- 22222 26921 - 47.97340 - 93491 - 3. | 29364 -47.43683 .93208 3
31761 -46.89090 .92182 3 | .36419 -45.79532 .87901 3. | and may comment a | TOTAL CONTRACT OF THE PROPERTY | -44.22127 .75909 3
-43.73849 .70426 3 | .422247339 -43.28588 .64843 3 .444449417 -42.86274 .59820 4 | . 4666751465 -42.4659 .55357 4
.4888953485 -42.09471 .51453 4 | .5111155480 -41.74412 .48109 5
.5333357452 -41.41161 .45324 5 | . 55554 59401 -41.09378 . 43098 5 . 57778 61328 -40.78705 . 41433 5 | 60000 - 63235 -40.48767 -40326 5 | . 6444 - 66990 - 39,90006 -
38823 - 5
. 64444 - 66990 - 39,90006 - 38823 - 5 | . 68889 - 70669 - 39,332,468 - 37640 - 5
. 71111 - 72480 - 39,0328,4 - 37169 - 5 | 7373 - 74272 - 78,75145 - 36,751 | . 75556 74047 -38.46677 .36467 | .800007542 -37.89443 .36085 5 .8222281263 -37.60965 .35980 5 | 59 . B444 B246 - 57 . X142 . 33887 5 . 5406
40 . B4467 - 18651 - 75 . (3148 . 33806 5 . 4894
4 . Banana - B4748 - 24 . 3474 . 44748 8 . 4734 | | | RESULTS. OUT 6-25-95 10:23a | .4222
.4444
.4444 | -,45343 -35,86846 .59674 3
-,46935 -35,37843 .56912 3 | . 53333 - 48500 -34.90378 - 54674 3.
. 55556 - 50037 -34.44069 - 52596 3. | 5/7/8 - 51548 - 525,94514 - 51707 - 50 | . 64444 - 55928 - 52.62701 . 50217 3. | . 6889 - 58724 - 31,71991 . 49204 3. 711111 60086 - 31,26694 . 48650 3. | .7333361423 -30.81492 .48065 3.
.7555662737 -30.36432 .47447 3. | . 64027 - 29.91558 . 46798 3 | . B222266538 -29.02544 .45459 3 | .8666768960 -28.14400 .44377 3.
.8888970138 -27.70507 .43952 3. | .9111171294 -27.26647 .43604 3. | . 9555673542 -26.38751 .43140 3.
.9777874634 -25.94571 .43024 3. | 1.0000075704 -25.50138 .42985 3. | DATA POINTS | POINT FRAC, M Y-D(DEG) | .00000 | 2 .20067 -43.95657
3 .40026 -38.04339 | .59980 -33 | 1.00000 -25 | CARTESIAN COORDINATES ON STREAMSURFACE 4 | POINT 21 X1 Y1 22 X2 Y2 | 4.85170 -1.36435 1.18598 4.85316 -1.39243
4.87640 -1.29826 1.12576 4.87846 -1.33915 | 4.89993 -1.23041 1.06656 4.90228 -1.28561
4.92229 -1.16282 1.00839 4.92472 -1.23180 | 4.94349 -1.09551 .95122 4.94582 -1.17767
4.96354 -1.02852 .89497 4.96561 -1.12318 | 4.9824496187 .83970 4.98412 -1.06830
5.0001989557 .78540 5.00139 -1.01301 | 5.0167882964 .73207 5.01744
5.0322576410 .67971 5.03229
E. 0444746894 .47874 E. 04598 | 5.06009 - 63424 .57778 5.05854 - 78734
5.07259 - 56995 .52823 5.07002 - 72972 | 5.095104424 .43184 5.0900461309 | 5.1052437761 .38487 5.0787155407
5.1147331698 .33865 5.1065849465 | 5.123602373 .2931 5.1137313450
5.1319219285 .24818 5.1202137457 | 5.15%913131 .20376 5.1261031378
5.146%607011 .15974 5.1314525303
F. FETT - 00005 114,000 F. 14471 - 14171 | 5.16002 .05129 .07271 5.1407413009 Rt 4487413009 | 5.17122 .1713601336 5.1484100577 E 17412 .75690 | 5.18063 .2901409874 5.15473 .11990
E 18473 .440714119 E 15744 .18721 | 5.18817 . 40770 - 18349 5.15994 . 24683 E. 18349 5. 18987 . 40770 - 18349 5. 18999 . 31074 | 5.1916/ .1900/126594 5.18220 .310/1
5.19461524126746 5.16429 .37492
 | 5.19723 .5819430953 5.1862445736
5.19954357335125 5.18610 .50403 | 5.20157 .69689 .39284 5.16991 .06891
5.2033 .7540645429 5.17172 .63398 | 5.20483 .8110347568 5.17358 .69724
5.20611 .8678251695 5.17351 .76466 | 5.20715 .9244555811 5.17757
5.20795 .9809459916 5.17978 | 5.20851 1.0372864012 5.18214
5.20881 1.0935168098 5.18464 | 42 5.20885 1.1496372174 5.18733 1.0936382894
43 5.20862 1.2056576240 5.19015 1.1597385192 | 5.Z0811 1.Z0160 | | 33569 - 36265 - 46.45 - 47.72 3.0379 3.9515 - 3.4750 3.2187 3.2369 3.3569 - 3.2369 3.3569 - 3.2369 3.3569 - 3.2369 3.3569 - 3.2369 3.3569 - 3.2369 3.3569 - 3.2467 - 3.472 3.0399 3.9515 - 3.479 3.4729 | . 2926133744-46.342 .09302 .3262630533 .25896 | PT SUPERCEONE SUPERCETAD | 31 -1.2705/E+00 1.3747/E+00 LEADING EDGE AXIAL DIFFERENCE =0590 NEW DELX = .0590 | |--|---|--|---| | | .09706 .3493832642 .27980 | 1 -1.27051E+00 1.37477E+00 -1.29935E+00 1. | | | | .3365838265-45.256 .10072 .3723434720 .30081 | 2 -1.20461E+00 1.30490E+00 -1.24862E+00 1. | FRAC. M Y Y-D(DEG) Y-DD R OF | | Column C | .35856 -,40463-44,729 ,10399 ,39515 -,36769 ,32197 | 4 -1.07344E+00 1.16872E+00 -1.14653E+00 1. | .00000 -52.67686 | | | OCTAR COTOT - 10714 - 10501 - 100 11-10541 - 10000 | 5 -1.00823E+00 1.10236E+00 -1.09510E+00 1. | 02893 -52.25440 .89426 4.
05741 -51.82330 .89561 4. | | | 87515; 27785; 18711; 98901; 177;14-1797; 1-5085; | 7 -8.78744E-01 9.73000E-01 -9.91327E-01 B | 08545 -51.38288 .89787 4. | | 1 | .4025244742-43.738 .10933 .4403240792 .36473 | 8 -8.14514E-01 9.09962E-01 -9.38925E-01 8. | -,11305 -50,93246 ,90102 4.
-,14020 -50,47128 ,90508 4. | | 1 | .4245146829-43.286 .11139 .4626942775 .38632 | 10 -6.87189E-01 7.87109E-01 -8.3298SE-01 6 | -,16691 -49,99856 .91004 4. | | 1 | A0004 - 40004 - 1110 - 1110 - 40004 - 44444 | 11 -6.24134E-01 7.27268E-01
-7.79407E-01 5. | 19317 -49.51345 .92266 3.
21897 -49.01506 .92266 3. | | 1 | COMO. 71/11: CYTAT: 70011: COM:71-18881: 41011: | 13 -4.99316E-01 6.10636E-01 -6.70959E-01 4 | .2000024432 -48.50247 .93032 3. | | | .4684750910-42.467 .11421 .5070346697 .42992 | 14 -4.3755[E-01 5.53778E-01 -6.1609[E-01 3. | . 22222 26921 -47.97540 . 93491 3.
. 24444 29364 -47.43683 . 93208 3. | | 1 | .4904552909-42.095 .11495 .5289848643 .45192 | 16 -3.15299E-01 4.42713E-01 -5.05078E-01 2. | .2666731761 -46.89090 .92182 3. | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 70274 - 70203 - 70033 30311 124 12-00043 - 12013 | 17 -2,54799E-01 3,88362E-01 -4,48945E-01 1, 48 -1 64407E-01 3,34464E-01 -3,92415E-01 1, | .2888934112 -46.34211 .90413 3. | | 1 | /01/1: CBCOC: | 19 -1.34976E-01 2.81620E-01 -3.3550ZE-01 7 | . XXXX 38682 -45. 25579 . 84646 3. | | 1 | .5344256832-41.412 .11507 .5724852517 .49636 | 20 -7.56229E-02 2.29032E-01 -2.78223E-01 1. | .35556 -,40904 -44,72912 .B0649 3. | | 1 | .5564058760-41.094 .11444 .594015444B .51879 | ZZ 4.19876E-02 1.24968E-01 -1.62568E-01 -9. | .4000045230 -43.73849 .70426 3. | | 1 | 22127 25727 - 12912 STT11 TOT 02-52202 - 07052 | 23 1.00241E-01 7.33407E-02 -1.041B9E-01 -1. | 4444 - 49417 - 42.86274 . 59820 4. | | 1 | | 25 2.15622E-01 -2.94212E-02 1.36956E-02 -2 | .4666751465 -42.46659 .55357 4. | | 1 | .6003762554-40.488 .11181 .6366758302 .56407 | 26 2.72748E-01 -8.06429E-02 7.32021E-02 -3.
27 3.29507E-01 -1.31790E-01 1.33076E-01 -3. | . 51111 55480 -41.74412 . 48109 5. | | 1 | .6223564421-40.192 .10983 .6577960226 .5B691 | 28 3.85902E-01 -1.82879E-01 1.93313E-01 -4 | .5333357452 -41.41161 .45324 5. | | 1 1 1 1 1 1 1 1 1 1 | .644336268-39,900 .10741 .6787862148 .60988 | 29 4.41941E-01 -2.33916E-01 2.3390/E-01 -9.
30 4.97632E-01 -2.84910E-01 3.14849E-01 -5. | 5 25114. 20787-04-82519 87772. | | 1 | STORY WAYER STORY STORY STORY STORY | 31 5.52986E-01 -3.35870E-01 3.76128E-01 -5. | .6000063235 -40.48767 .40326 5. | | 1 | .6663168097-39.610 .10457 .6976564069 .63278 | 33 6.62727E-01 -4.37706E-01 4.99652E-01 -6. | .6444466990 -39.90006 .38823 5 | | Fig. 1985 19 | .6883065907-39.323 .10129 .7203965989 .65620 | 34 7.17122E-01 -4.88595E-01 5.61879E-01 -6. | .6666768839 -39.61034 .38191 3.
.6888970669 -39.32268 .37640 5. | | State | .7102871698-39.037 .09760 .7410267908 | 1 | .71111 -,72480 -39.03656 .37169 5 | | No. 10 N | 00101 70007 - 63171 V310V 134 81-61711 - 7011 | PT SURFACEONE SURFACE | . 73333 - 74272 -38.75145 . 36.7517 . 36.751 . 37.355 - 76047 - 38.46677 . 36467 . 5. | | 10 10 10 10 10 10 10 10 | 0050/: 02840:- 2610/: 06540: 16/:85-2/f2/:- 0226/: | • | 3 35236 - 38.18197 - 36236 S | | 10 10 10 10 10 10 10 10 | .7542575227-38.467 .08898 .7819271744 .72657 | 36 B.25060E-01 -5.90334E-01 6.B7217E-01 -7 7 2 78466E-01 -6.411898E-01 7.50704E-01 -8 | .80000 -,79542 -37.89643 .36085 5.
.82222 -,81263 -37.60965 .35980 5. | | 1 | .7762376965-38.182 .08406 .8022173641 .75025 | 38 9.31894E-01 -6.92027E-01 B.13658E-01 -8 | . B4444 - 82966 - 37.32142 . 35887 5. | | 1 100000000000000000000000000000000 | .7982178685-37.896 .07874 .8223975578 .77403 | 59 9.849USE-01 -7.4286AE-01 B.//2/UE-01 -8
40 1.0376BE+00 -7.93690E-01 9.4112BE-01 -9 | . BBBB9 - 4125. 12047. 35738 5 | | 1 1.2445ERO 1.4445ERO 1.0250ERO 4 1.0200 1.0250ERO 4 1.0200 1.0250ERO | SOUGH TOTAL STOTE AVERY VIT AL ASSAULT VITOR | 41 1.09022E+00 -8.44512E-01 1.00522E+00 -9 | .9111187969 -36.44723 .35682 5. | | ## 1.3497260 1.0973810 1.2032810 1.1281320 1.1 | 14/4/: 141//: B1718: 505/0: 010:/5-/B508:- 41078: | 43 1.19464E+00 -9.46129E-01 1.13407E+00 -1 | 95556 91216 -35.85550 .35608 5 | | Heart Hear | .8421882072-37.321 .06692 .8624679411 .82189 | 44 1.24654E+00 -9.96929E-01 1.19880E+00 -1
45 1.29824E+00 -1.04773E+00 1.26373E+00 -1 | 1,0000094393 -35.25564 .35583 5. | | POINTS DESCRIBING LEADING EDGE MADIUS DWTA POINTS | .8641683739-37.032 .06043 .8823681327 .84596 | 46 1.34977E+00 -1.09852E+00 1.32883E+00 -1 | • | | 1 1.2993E+00 1.3577E+00 | .8861485388-36.740 .05356 .9021683242 .87012 | POINTS DESCRIBING LEADING EDGE | DATA POINTS | | 1 -1.2993E+00 | .9081287021-36.447 .04632 .9218885158 | POINT NO. X | FRAC. M | | 1.000000000000000000000000000000000000 | | WYENT OF T | | | 1 | .9301188635-36.152 .03870 .9415287073 .91869 | 2 -1.30042E+00 1 | | | S | .9520990233-35.855 .03072 .9610988988 .94309 | 3 -1.301335+00 1 | .59975 -43 | | 1.30306±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.36325±00 1.37645±00 1.3 | .9740791813-35.557 .02238 .9805890903 .96757 | 5 -1.30258E+00 | 72- 8964. | | 1.000
1.000 1.00 | .9960593375-35.256 .01367 1.0000092817 | 7 -1.30306E+00 1 | | | 10 -1,3027600 1,3707600 | NORMALISED PLOT OF SEC | -1.30301E+00 1
9 -1.30275E+00 1 | SIAN COROLINALES ON SIREMISON PICE S | | 1.2008/E-00 1.3774/E-00 | | | Z1 | | 1.2796.00 1.37995.00 1.37505.00 1.37 | DIMENSIONAL RESULTS - ALL RESULTS REFER TO A BLADE OF SPECIFIED CHORD | - | | | CENTERED AT Is -1.2849E+00 1.3734E+00 1.37734E+00 1.37734AE+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734E+00 1.37734AE+00 1.37734E+00 1.37734AE+00 1. | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | 55118 -1.19220 1.21929 5.53390 -1.25055 1 | | 17 - 1,27946+00 1,37946+00 | BLADE CHORD = 3.6268ZE+00 | | 57387 -1.06246 1.09055 5.57678 -1.14871 | | 19 1.2009200 1.38048500 1.38048600 1.38048500 | • 1.81341E-02 | 17 -1.29436E+00 1 | .5933199798 1.02741 5.59626 -1.09736
6120293382 .96509 5.6147 -1.04567 | | 1 | SECTION AREA = 7.60090E-01 | -1.2909XE+00 | 62939 86998 .90363 5.63145 99362 | | 2 125146-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.381586-00 1.376816-00 1.376816-00
1.376816-00 1.3 | SECOND MOMENTS OF AREA ABOUT CENTROID | -1.28725E+00 | 6608074335 .78325 5.6618088834 | | 24 -1.28157800 1.38159800 1.38159800 1.3 5.70001 5.25534 6097 5.6975 -7770 2.55534 6097 5.6975 -7770 2.55534 6097 5.6975 -7770 2.55534 6097 5.6975 -7770 2.55534 6097 5.6975 -7770 2.55534 5.7009 2.5975 -7770 2.5750 2.57534 5.7009 2.5750 2.57 | | -1.28535E+00 1 | .6/47168060 ./2133 5.6/52383508
4880441827 .44427 5.4875378134 | | 25 -1,2774E-00 1,38030E-00 15 5,7220 -14772 14718 5,71819 -14772 14718 5,71819 -14772 14718 5,71819 -14772 14718 5,71819 -14772 14718 5,71819 -14772 1 | IX = 2.53374E-01
IY = 2.92666E-01 | -1.28157E+00 | 7002455634 .60907 5.6987572720 | | 28 -1_274526-00 1_375956-00 1_7 5_17405 -1_37703 -4_4735 5_37504 1_50517 | IXY =-2.67492E-01 | -1.27794E+00 1 | 72207 43372 . 49718 5.71819 61755 | | 8.4.807928-03 (MT-42.900 UITH (I) MIS) 29 -1.277186-00 1.37428-0.3718-00 1.37428-0.3718-00 1.37428-0.3718-00 1.37428-0.3718-0.018-0.3718-0.018-0.3718-0.018-0.3718-0.018-0.3718-0.018-0.3718-0. | PRINCIPAL SECOND MOMENTS OF AREA ABOUT CENTROID | 1.2762XE+00 1 | 37303 .44235 5.7265256208
31275 .38821 5.7340150617 | | - 5.41238-01 (A-25.00 HTM R) ALIA CALLO CA | - 4.B0775E-03 | -1.2731E+00 1 | 25285 .33470 S.7407144986
19774 .78177 S.7446839314 | | | S.41ZXXE-01 (N. 1-1Z, YOU WITH (1) HALS. | | 21 of 32 | | Page 22 of 32 | 3 .0513506331-54.927 .03033 .0637605459 .03894072 | 4 .07379 09434-54.579 .03785 .08872 08339 .05787 105 | - 12002-54-222 . 104522 . 11258 - 11180 . 07690 | | 6 11718 -,15527-53,858 ,05239 ,13834 -,13982 ,09603 -,170 | 7 .1391318511-53.482 .05934 .1629716745 .11528202 | 8 .16107 21454-53, 095 . 06604 . 18748 19471 . 13467 234 | | 9 .1830224355-52.6% .07247 .2118422159 .15419265 | 10 .2049627214-52.282 .07861 .2360524809 .17387296 | 11 .2269130030-51.854 .08444 .2601127422 .19370326 | TITLE BOOK - SOTTE COOKS LIL IN PACES AND A | | 13 .2707935531-50.966 .09505 .3077132538 .23388385 | | NAMES X Y ANGLE THICKNESS X1 Y1 X2 Y2 | 14 . 29274 38216-50.515 .09981 .33126 35042 . 25422 413 | 15 .3146840858-50.066 .10419 .3546337514 .27474442 | 2007 - 17777 BIBNI 702 AB-0327 - 7227 | *************************************** | 17 .3585746020-49.192 .11175 .400864236B .31628496 | 18 .38052 -,48543-48.779 .11490 .42373 -,44757 .33731 -,523 | 19 . 40246 -,51030-48.390 .11762 .4464347125 .35849549 | 20 42441 - F2485-48 020 (1990 448098 - 49474 (17984 - 574 | | 21 .4463555911-47.697 .12173 .4915/51814 .40134600 | 22 . 46830 -,58309-47,392 .12309 .51359 -,54143 .42300 -,624 | 23 ,49024 -,60683-47,110 ,12398 ,53566 -,56464 ,44482 -,649 | 24 .5121963035-46.851 .12438 .5575658781 .46681672 | 25 .53413 -,65366-46,611 .12429 .57929 -,61097 .48897 -,696 | 26 .55608 -,67678-46,388 .12369 .60085 -,63412 .51130 -,719 | 27 .57802 -,69973-46,179 .12260 .6222565729 .53379742 | .12103 .64348 | 29 .6219174515-45.789 .11897 .6645570367 .57927786 | 30 . 6438576764-45.604 .11644 .6854572691 .60226808 | 31 . 6658078998-45,424 .11343 .7062075017 .62540829 | 32 . 68774 81218-45.247 .10996 .7267977347 .64870850 | 33 .7096983425-45.071 .10602 .7472279681 .67216871 | 34 .7316385618-44.895 .10162 .7675082018 .69577892 | 35 .7535887798-44.718 .09677 .7876284359 .71953912 | 36 . 17552 - ,89964-44.536 .09147 .8076086704 .74344932 | 37 . 79747 92116-44.349 . 08573 . 82743 89051 . 76750 951 | 38 . 81941 94254-44.156 . 07955 . 84712 91400 . 79170 971 | 39 . B4136 96377-43, 955 . 07294 . B6667 93752 . B1604 990 | 40
.8633098486-43.749 .06389 .8860896106 .84052-1.008 | 41 .88525-1.00579-43.536 .05842 .9053798461 .86513-1.026 | 42 .90719-1.02456-43.319 .05054 .92453-1.00817 .88985-1.044 | 43 .92914-1.04717-43.098 .04224 .94357-1.03175 .91471-1.062 | 44 .95108-1.06763-42.873 .03353 .96249-1.05534 .93967-1.079 | |-----------------|---|--|---|---------------------------------|---|---|---|------------------------------|--|--|--|---|--|--|------------------------------|---|---|--|---------------------------------------|---|--|---|--|---|---|---|--|---|---|---|--|---|--|--|---|---|--|--|--|--|---|---|--|--|---|--|--|---|---| | | | • 05 | 2 | • 23 | : | | •> 76 | • 37 | | 6 | • 10 | ₽2
• | 90 ኁ | *> 24 | - | | | ê
^• | • 05 | • 63 | | : 1 | 62 <= | • 36 | • 95 | • 04 | | ? | • 05 | 8 | 32 | ÷ | 91 | • 21 | • 63 | • 3 | R 6 | a | • 1 | 2 1 | 8 i | * i | i | 8 1 | \$ \$ | • | % | • | â ; | | | .3555646602 -49.19220 .77793 | .3777849157 -48.77903 .72766
.4000051676 -48.38964 .66860 | .4222254162 -48.02909 .60761 | . 46667 59047 -47.39155 . 50200 | .4888961451 -47.11041 .45738 | .5333366192 -46.61140 .38454 | .5555668534 -46.38820 .35630 .5777870858 -46.17873 .33353 | .6000073166 -45.97997 .31622 | .6222275457 -45.78911 .30296 | .6666779997 -45.42421 .28439 | 82245 -45.24709 .27908
84480 -45.07140 .27640 | .73333 86701 -44.89548 .27638 | .7555688908 -44.71765 .27900
.7777891102 -44.53617 .28426 | .8000093281 -44.34925 .29217 | .8444497596 -43.95507 .30854 | 40 .866679721 -43.74852 .31519 8.4163
41 .88889 -1.01831 -43.52642 .32082 8.1816 | -1.05954 -43.31938 .32942
-1.06042 -43.09799 .32901 | .95556 -1.08113 -42.87290 .33156
.97778 -1.10168 -42.64474 .33310 | 1.00000 -1.12206 -42.41418 .33361 | DATA POINTS | COUNTY TOWN THICA | | 1 ,00000 -53,60087
2 ,20065 -52,26970 | 3 .40042 -48.38251 | 50000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 -
1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 1000000 - 1000000 - 10000000 - 1000000 - | 6 1.00000 -42.41418 STREAMSHREACE GEOMETRY ON STREAMLINE NAMERR 6 | HINDON POOL DE LE CONTROL LA L | | =-42.414 (BLATE DUTLET ANGLE) = .00500 (BLATE LEADING EDGE RADIUS AS A FRACTION | .08340 | .5500 (LOCATION OF MAX. THICK. AS A FRACTION O 2.4845 (MERIDIONAL CHORD OF SECTION) | DRIALIZED RESULTS | BLADE HAVING A MERIDICHAL CHORD PROJECTION OF UNITY MENSIVED MISSENSOR MENON PROPERTION OF UNITY | BLADE CHORD = 1.4917 | w | CAMBER ANGLE13.187 | SECTION AREA 12707 | LOCATION OF CENTROLD RELATIVE TO LEADING FLUGE | XBAR = .49397
YBAR =59688 | SECOND HONENTS OF AREA ABOUT CENTROID | • | IX00753 | MALE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS = 42.156 | PRINCIPAL SECOND NORWYS OF AREA ABOUT CENTROID | (SIX) (X) HIM 95, 54 TA) 05310 - X41 | IPY = .00012 (AT 42.156 WI | POINT MEANLINEDATA SURFACE COORDINATE DATA NAMBER X Y ANGLETHICKNESS XI YI XZ YZ | | => 21 2 .0294003185-55.267 .02267 .0387202539 .02009038 | | T 6-25-95 10:23 | 33609 | | 16265 | 04514 | .01418 | . 13393 | 25512 | . 31623 | 43041 | 50147 | .56382
.62646 | .68937 | . 81597 | 4 5
5 5 | 1.00765 | 1.13651 -1.06519 | 1.26613 | .201 SOLIDITY = 1.7128 | .201 SOLIDITY = | 4 | 6.6316 | 6.4441
6.2476 | 6.0431
5.8318 | 5.6148
5.3935 | 5.1690
4.9426 | 4.7420 | 4.4402 | 4.4372
4.4890 | OF CURV | | LTS.OUT | | 5.75665 | 5.76432 | 5.76998 | | | | | | | | | | | | 5.76962
5.76863 | 110N - 4 | | E - | 1818.
1871 | .82214 | .82812 | .85630 | .86910
.88362 | .89489 | .87598 | .85209
.81940 | Y-00 R | | RESUL | 71622 | 12499 | .07326 | 02981 | 08124 | 183% | 23524 | 33772 | . 38890 | 49119 | . 59340 | 64446 | 69549 | 79742
84875 | 89921 | 95002
-1.00078 | 1.10201 | | YSEHI | 1.32974 | 1.33125 | 1.33456 | 1.33632 | 1.33997 | 1.34365 | 1.34544 | 1.34886 | 1.350 4
1.35191 | 1.35326 | 1.35553 | 1.35714 | 1.35804 | 1.35816 | 1.35753 | 1.35615 | 1.35412 | F | 2 DEVIATION | N | Y-D (DEG) | 266% | 1.92662 | -54.22303
-53.85784 | 1.48231 | 2.69563
2.28199 | 41387 | .51542 | . 62312 | -D (DEG) | | | 13418 | | | | | | | | | | | | | | | 1.18409 | | | XSENI | 1,35145 | 1.35251 | 1.35412 | 1.35465 | 1.35513 | 1.35482 | 1.35438 | 1.35293 | 1.35194 | 1.34949 | 1.34650 | 1.34309 | 1.33943 | 1.33567 | 1.33197 | 1.32850 | 1.32541 | 1.32283 | ITERATION
ITERATION | I TERATION | <u>+</u>
- | .00000
.0322 | .06411 -54
.09535 -54 | 12660 -54
15723 -53 | .18745 -51
.21725 -53 | 27558 -52 | 30410 -51 | 35980 -50 | 41375 -50 | 4-P | | | | | 5.78207 | 5.79132 | 5.79515 | 5.80127 | 5.80358 | 5.80675 | 5.80763 | 5.80803 | 5.80757
3.80667 | 5.80535 | 5.80361
5.80143 | 5.79882 | 5.79230 | 5.78838
5.78402 | 5.77328 | | ZSEMI | 1.48555 - | 5.48505 - | 5.48404 | 5.48354 | 1.48259 | 5.48173 | 5.48135 | 5.48069 | 5.48043 -
5.48021 -: | 5.48004 - | 5.47986 - | 5.47990 | 5.48014 | 5.48059 | 5.48122 | 5.48243 - | 5.48289 - | 48387 | RFACE 6 | | | | | .08889 | | | | | | | | | 8 | # R | | | | - | | - | | | | | | | | 5 ‡ | | | POINT | - | N F |) + : | SO 40 | ~ (| 20 00 | 2: | 12 | 17 12 | 25 25 | 17 | 2.8 | 22. | 12.2 | 10 % | 28 | 2, 2,
2, 8 | | STREAMSUR | | POINT | | | | | | = 2 | 122 | 22 22 | POINT FR | RESULTS.OUT 6-25-95 10:23 | 38 | Page 24 of 32 | |--|---|--| | 31 6.12468 -1.25032, 1.47197 | SECTION AREA = 14390 | 194 127 18781 173127. 11467. 11467. 173127 186781 64327 1941. | | STREAMSURFACE 7 ITERATION 1 DEVIATION = 3.647 SOLIDITY = 1.5838 | | 33 - 10918 - 95079 - 49.889 . 11084 - 75156 - 91508 . 66579 - 986 | | 2 DEVIATION = 3.715 SOLIDITY = 2 DEVIATION = 3.715 SOLIDITY = | XBAR = .47644
YBAR =67963 | 34 .7310997674-49.770 .10633 .7716794240 .69030-1.011 | | POINT FRAC. M Y Y-D(DEG) Y-DD R OF CURV | SECOND MOMENTS OF AMEA ABOUT CENTROID | 35 -1.00258-49.647 .10133 .7916096977 .21438-1.033 | | . 00000 . 00000 -58.02584 . 68089 | IX • .01282 | 36 73490-1.02831-49.519 ,05586 ,81136 -,99719 ,73844-1.059 | | 0444407052 -57.53139 .68727 | • | 37 ,79481-1.05391-49,384 .08993 .83094-1.02464 .76268-1.083 | | 13969 -57.01355 .70638 | ANGLE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS = 38,026 | 38 .81872-1.07940-49.241 .08352 .85035-1.05213 .78708-1.106 | | . 15332 - 20745 - 56.46107 - 73824
- 15332 - 20745 - 56.46107 - 73824
- 15332 - 24040 - 154.4747 - 78084 | PRINCIPAL SECOND NOVENTS OF AREA ABOUT CENTROLD | 39 .84063-1.10475-49.090 .07666 .86959-1.07965 .81166-1.129 | | . 135564405 - 35.16/7)4575457545778457764576 | IPN = .02057 (AT 38.026 WITH (Y) AXIS) | = 5 85 40 .86254-1.12996-48.931 .06934 .88868-1.10718 .83640-1.152 | | .2222233852 -55.20121 .83389 | | | | 37029 -54.84919 .84728
40164 -54.48743 .85010 | POINT HE AN LINE DATA SURFACE COORDINATE DATA NAMBER X Y ANGLE THICKNESS XI YI XZ YZ | | | .3111146208 -53.75221 .82402 | | | | 7104/ | 2 .0300203493-57,781 .02408 .0402102851 .01983041 | | | 1-D(DE6) 1-DD R | 3 .0519306953-57.531 .03185 .0653606098 .03849078 | | | .355652291 -53.03386 .75565 | | | | .4000058125 -52.3/588 .64478 .422260992 -52.08326 .58117 | | _ | | .4444463831 -51.81649 .52281
.4666766644 -51.57390 .46989 | => 51
6 .1176517130-56.742 .05434 .1403715640 .09493186 | • | | . 51111 72203 -51.15364 . 38040 | | DITENSIONAL RESULTS - ALL RESULTS REFER TO A BLAIR OF SPELT ALD CARROLL SHELLY AND CARROLL SHELLY ALD CARROLL SHELLY AND CARROL | | . 55333 74954 -50.97179 .34383
.55556 77687 -50.80569 .31271 | | 6 BLADE CHORD = 3.74724E+00 | | .5777880405 -50.65294 .28704 .6000083108 -50.51101 .26682 | => 41
9 .1833826989-55.861 .07493 .2143924887 .15237290 | 00 L.E.RADIUS = 1.87362E-02 CENTERED AT X=
-1.1280E+00 Y= 1.5699E+00 | | .6222285799 -50.37742 .25118 | - TOTAL - ES EAC OB124 2 TETR - 27902 17179 | SECTION AREA 7 478745-01 | | .6666791143 -50.12778 .23084 | | | | .6888993797 -50.00808 .22614
.7111196441 -49.88929 .22509 | .08727 .2630330883 .19136 | SECONO | | 7333399073 -49.76952 .22768 | | 1 | | 7777B - 1.04304 - 49.51910 - 24382 | | - IX | | | | PRINCIPAL SECOND MONENTS OF AREA ABOUT CENTROID | | 39 .8444 -1.12058 -49.08961 .28464 12.5091
40 .86667 -1.14615 -48.93058 .29572 11.9255
44 .86667 -1.14615 -48.93058 .29572 11.9255 | NUMBER X Y ANGLE THICKNESS X1 Y1 X2 Y2 | 2 IPX = 5.85498E-01 (AT 38.026 WITH (X) AXIS) | | 7212. 01202 11116 48.59330 - 11116. | 14 . 29292 42646-54,120 . 10321 . 33473 39621 . 25111 456 | (2.47) (1. 11.49 0.00.00 11. 0.0.00.01.1.) - 17. | | . 93333 -1.22198 -48.41673 .31874
.95556 -1.24694 -48.23605 .32300 | = 7 70
15 .3148345654-53.752 .10778 .3582942468 .27137488 | N | | 1.00000 -1.29639 -47.86592 .32641 | | 1 -1.11209E+00 1.57979E+00 -1.1438E+00 1 | | DATA POINTS | 35 e0 17 .3586451552-53.034 .11568 .4048648074 .31243550 | 3 -95740E-00 1.3040IE-00 1.0578IE-00 1 | | POINT FRAC, M Y-D(DEG) | | 5 -8.80022E-01 1.3377E-00 -9.71106E-01 1 | | 1 ,00000 -58,02584 | | 7 -7.65200E-01 1. | | 2 .20093 -55.52562
3 .40088 -52.36377 | | 9 -6.51509E-01 9.95011E-01 -7.9757E-01 8 | | 5 7999 -49.30488 | 21 ,44628 -,62930-51,816 ,12625 ,49590 -,59027 ,39666 -,668 | 11 -5.79159E-01 7.42059E-01 -7.471E-01 0
11 -5.79159E-01 8.56494E-01 -7.04695E-01 7
12 -6.48050E-01 8.56494E-01 -7.04695E-01 7 | | STREAMSURFACE GEOMETRY ON STREAMLINE NUMBER 7 | ., 54 | 13 -4.28336E-01 7.21159E-01 -6.13094E-01 5 | | | • 1 | 14 -3./354E-01 | | | ` ' | 17 -2.11544E-01 4.59411E-01 -4.25038E-01 2 | | YZERO = .00500 (BLADE LEADING ENGINE AS A FRACTION OF CHORD) | - | 19 -1.05600E-01 5.75050E-01 5.75050E-01 1 | | 5500 | • | 21 -1.24890E-03 2.06401E-01 -2.30483E-01 2
21 -7.24890E-03 2.06401E-01 -2.30483E-01 2 | | CORD = 2.3099 (MERLDIOWAL CHORD OF SECTION) | • | 23 1.01472E-01 B.1807E-02 -1.30472E-01 -1 | | NORMALIZED RESULTS - ALL THE FULLMING REFER TO A
BLADE HAVING A MERIDIONAL CHORD PROJECTION OF UNITY | | 25 2.02494E-01 -4.72522-02 -2.9791E-02 -2 | | Machinagen karan machinagen kachinagen kachinagen karan | | 26 2.52348E-01 -1.05347E-01 2.19790E-02 -2.93192E-01 27 3.01768E-01 -1.67698E-01 7.37716E-02 -3.54624E-01 | | BLADE CHORD = 1.622 | -> 41 30 .6434587227-50.250 .12146 .6901583343 .59676911 | 28 3.50756E-01 -2.30126E-01 1.25996E-01 29 3.99314E-01 -2.92648E-01 1.78649E-01 | | STAGGER ANGLE =-52.354 | 31 . 66536 89855-50.128 .11841 .71080 | 30 4.47446E-01 -3.53277E-01 2.31729E-01 -5.34694E-01 31 4.95154E-01 -4.18022E-01 2.85234E-01 -5.93369E-01 | | CARBER ANGLE =-10.160 | a> 51 | 5.42442E-01 -4.80887E-01 3.39158E-01 -6.51414E-01 | | | | | | | | IC/14PRIN | |--|---|---|---
--|--|--| | 6 (77080 -1.2136) 154442
6 (78954 -1.2134 155350
6 (78954 -1.2134 155350
11 (78954 -1.2124 155350
11 (78954 -1.2124 155350
11 (78954 -1.2124 155311
12 (7889 -1.2124 155711
13 (7889 -1.2124 158985
13 (7889 -1.2131 158985
14 (7891 -1.2093 158980
15 (7891 -1.2093 158980
16 (7794 -1.2093 158980
17 (7899 -1.1995 15882
17 (7899 -1.1995 15882
17 (7899 -1.1995 15882
17 (7899 -1.1995 15882
17 (7899 -1.1996 15873
17 (7899 -1.1996 15873
17 (7899 -1.1996 15873
18 (7799 15873 | 6.77129 -1.18035 1. 6.77175 -1.17923 1. AYSURFACE B ITEMATION 1 ITEMATION 2 ITEMATION 2 | 00000 00000 -59, 97257 -47719 18, 00222 -03824 -59, 88228 -44010 17, 00446 -10744 -59, 68228 -44010 17, 00446 -10745 -59, 68000 -44884 17, 00889 -18203 -59, 28496 -48279 15, 11111 -18946 -89, 2022 -51000 14, 11333 -22646 -59, 04412 -54203 13, 11333 -22646 -59, 04412 -54203 13, 11778 -30018 -58, 48485 -57, 5825 11, 2222 -37869 -88, 14785 -67, 5825 12, 2222 -37749 -88, 17829 -77, 5820 | 28667 - 4,173 - 57,52809 - 77435
28889 - 4,7825 - 57,33163 - 778165
31111 - 5,1274 - 57,6038 - 77572
33333 - 5,8649 - 56,76928 - 77575
7 FMC, H Y DUEED Y-DD R I
328556 - 5,8038 - 56,48361 - 77417
- 4,0000 - 4,64700 - 55,5413 - 6,1984 | 20 | 7.7333 - 1.11820 - 52.5466 - 24920
7.7333 - 1.11820 - 52.78172 - 24822
7.7356 - 1.14822 - 52.70402 - 25447
8.0000 - 1.2087 - 53.70402 - 25467
8.0000 - 1.2087 - 53.7472 - 25850
8.4444 - 1.20849 - 53.1955
8.4444 - 1.20849 - 53.1955
8.1111 - 1.3566 - 52.7391 - 13528
8.1111 - 1.3566 - 52.7391 - 3475
8.7333 - 1.3569 - 52.7472 - 3594 | -1.44372 -52.23997
-1.47232 -52.04808
Y-D(DEG) | | | Ş | 1.5466
1.5744
1.7503
1.21182
1.21182
1.05108
97173
89315
89315
66260 | . 51776
. 41085
. 3,6906
. 2,8908
. 2,2879
. 16022
. 02617 | . 10406
. 12006
. 23006
. 28407
. 1514
. 41515
. 47514
. 53146
. 53108
. 55108
. 5509 | 87448
97116
98516
98516
1. 0908
1. 1938
1. 1938
1. 3937
1. 3937
1. 3937 | | | 16. 472
16. 613
16. 613
16. 613
11. 6903
11. 9903
11. 5903
11. 6005
11. 6005
10. 7005
10. 7005
10. 7005
10. 7005
10. 7005
10. 777
10. 7005
10. 777
10. 777 | 2 | | | - 20133
- 15096
- 16018
- 04889
- 05493
- 16048
- 16048
- 26773
- 26773
- 3778
- 43178 | | | | 2004 1 22509 1 22509 2 23509 2
23509 2 | 2 | 6.77313 - 6.77513 - 6.77513 - 6.87751 - 6.87723 - 6.87628 - 6.90675 - 6.90675 - 6.9762 - 6.97 | | | 7,01599
7,01168
7,00187
7,00187
6,99642
6,99645
6,97150
6,97150
6,97150 | | | -50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,000000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,000000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,000000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,000000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,000000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
-50,00000
- | STREATSURFACE
Y1 | 11.56022
11.48712
11.4159
11.34257
11.27109
11.2864
11.05977
1.05977
1.05977
1.05973
1.05973
1.05973
1.05973 | 71%2
65359
65359
52317
45916
3954
33515
26917
14392 | . 08149
. 04327
. 04327
. 10569
. 10569
. 25071
. 41895
. 41895
. 54491 | 73444
79770
86098
92424
05048
11.11383
11.17691
11.23992
11.30284 | YSEN1
1.54060
1.54226
1.54402 | | - 91143 - 5 91441 - | た智書だ g 「 | | | . 00004
. 13129
. 18106
. 22040
. 2781
. 2781
. 4787
. 4734
. 47074
. 51755
. 56799 | | xsent
-1.21087
-1.21388 | | | . 40088 -52.36
. 60035 -50.50
. 79993 -49.38
1.00000 -47.86
IAN COORDINATES | | | 7.04484
7.04833
7.05341
7.05343
7.05393
7.05389
7.05490
7.05389
7.05098
7.05098
7.04446 | | 29EHI
6.77313 -
6.77266 -
6.77218 - | | £ _ | CARTESIAN | - 444444444444444444444444444444444444 | 228282828 | n a n n a a a a a a a a a | ********* | POINT 2 | | | | | 0170. | | | • | | | | | | | | | | 26411E-01
2.2176E-01
 | | | - N-DEFIX - | | 6. 4518
6. 1846
6. 1846
7. 19706
6. 0858
6. 0858
7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 10.622
12.672
13.672
13.684
14.5730 | | AGE-01 | | | 0710 NEW | - R - 4 4 4 4 8 8 8 8 7 7 4 | | * 6 5 5 5 5 | | AGE-01 | 6535F+00
6535F+00
6623E+00
7711E+00
7731E+00
7731E+00
7731E+00 |
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-00
1805-0 | 0710 NEW | , 68089 9 68077 9 68727 9 68727 9 68727 9 70672 8 72072 8 72072 8 72072 8 72072 8 72082 7 78285 7 7828 | 85789
87783
87783
87793
87795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7 | 38040 10
38040 10
34383 11.
31271 12.
28704 13. | | 9855-01 4-487395-01 | 6+00 1,565376+00
6+00 1,565376+00
6+00 1,567376+00
6+00 1,573136+00
6+00 1,573136+00
6+00 1,573046+00
6+00 1,57306+00 | E-00 1.578-8E-00
E-00 1.580-8E-00
E-00 1.580-8E-00
E-00 1.580-7E-00
E-00 1.586-7E-00
E-00 1.586-7E-00
E-00 1.588-7E-00
E-00 1.588-6E-00
E-00 1.588-6E-00
E-00 1.588-6E-00
E-00 1.588-6E-00
E-00 1.588-6E-00 | 1.58788E+00 1.58724E+00 1.58674E+00 1.58674E+00 1.58724E+00 1.58739E+00 1.573799E+00 1.57379E+00 1.57379E+00 | Y-D(DEG) Y-DD R OF -88 02584 - 88089 9, -97.72089 - 68249 9, -97.72087 - 68249 9, -97.72087 - 68249 9, -97.72087 - 68249 9, -97.72087 - 778249 8, -96.44519 - 778249 8, -96.451997 - 778289 8, -96.451997 - 778289 7, -96.45199 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7,
-96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 778289 7, -96.4519 - 77828 7, -96.4519 - 77828 7, -96.4519 - 77828 7, -96.4519 - 77828 7, -96.4519 - 77828 7 | 58.20121 ST399 6-54.46743 S9010 6-54.46743 S9010 6-54.4023 S9010 6-55.75221 S9010 6-55.75221 S9010 6-55.75231 6-55.7523 | -51,3354 4242 9
-51,3354 4242 9
-51,1536 38040 10
-50,97179 34381 11,
-50,65294 28704 13,
-90,51101 26682 14, | | E | 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 1.145726-00 1.57868-00 -1.145726-00 1.57868-00 -1.145726-00 1.58726-00 -1.141026-00 1.58746-00 -1.141026-00 1.58746-00 -1.137918-00 1.58778-00 -1.137918-00 1.58778-00 -1.13798-00 1.5878-00 -1.13798-00 1.5878-00 -1.13798-00 1.5878-00 -1.13798-00 1.5878-00 -1.13798-00 1.5878-20 | 112926-00 1.58788E+00 11396E+00 1.5878E+00 11396E+00 1.5872E+00 11596E+00 1.5874E+00 11596E+00 1.5874E+00 11152E+00 1.5873E+00 11152E+00 1.57379E+00 11150E+00 1.57379E+00 11150E+00 1.57379E+00 11150E+00 1.57379E+00 | Y Y-D(DEG) Y-DD R OF .00000 -38,02564 .80099 9, .003543 -57,730099 .68229 9, .107528 -57,731097 .68227 9, .107528 -57,731097 .86272 9, .107528 -57,731097 .70523 8, .17775 -54,74239 .70527 8, .20745 -54,64107 .73824 8, .20745 -55,64107 .73824 8, .20745 -55,64107 .73824 8, .20745 -55,64107 .73825 8, .20745 -55,64107 .73825 8, .20745 -55,84107 .73825 8, | 85789
87783
87783
87793
87795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7795
7 | - 6494 - 51,3254 - 4722 - 51,2724 - 4722 - 4 | | ſ | | | - | | | | | _ | _ | | | _ | | - | _ | | | _ | - | | _ | | | | n | | /14 | PRIA | |-----------------------------|----------------|--|-----------------|-------------|-------------------------|--|-------------|--------------|-------------------|-------------|-----------------|-------------|-------------------------------|---------------------|---|-----------------------|-------------------|-------------|---------------|-----------------------|--------------------------|---|-------------------------|-----------------------|---------------------------------------|--------------------------|-------------|---------------------|---|---|----------------------------|---------------------------|-------------------------|---|-----------------------|-----------------------|----------------------|-----------------------|--------------------------|--------------------|-----------------|--|--------------------|--------------------|--------------------------|------------|----------------|--------------------------------|---------------|--------------------------|-------------------------------|--------------------------|---------------------------|--------------------|-----------------------|--------------------| | | 22 | 2 2 | # = | 7 F | = | = | = - | := | = | ŗ. | # | × (| 2 2 | 2 | 12 | z = | := | = | : | : = : | == | \$ \$ | • | | | | 8 2 | 8 | 8 8 | 8.8 | 3 8 | B | 2280. | | | | | | 1.19209E+00 | 1.03045E+ | 9.50606E-(| 7.93128E-(| 7.15621E- | 6.39005E- | 5.63320E-0 | 4.148475-0 | 3.420726-0 | 2.70267E-(| 1.99406E-0 | 1.29453E-(| 6.0358#E-(| -7.5449ZE-(| | -2.08346E-(| | -4.02B06E-(| -4.66435E-(| -5.92006E-C | -0.5396/E-(| -7.76256E-(| | £ > | -0 047606-/ | -9.5555E-(| -1.0141BE+(| -1.12961E+ | -1.18639E+(| -1.2980ZE+ | -1.40700E+00 | -1.46048E+ | NEW DELX - | | R OF CURV | 18.2532 | | | \$1667E-01 | 1345E-01 | 30036E-01 | 7662E-01 | 36009E-01 | 54029E-01 | 21707E-01 | 79035E-01 | 2613E-01 | 18859E-01 | 34746E-01 | \$0273E-01 | 5435E-01 | 2462BE-01 | 86389E-02 | 22444E-02 | 7752E-02 | 0939SE-01 | 5741BE-01 | 5464E-01 | 53487E-01 | 1.03483E-01 | | SURFACE | 044375-01 | 55756E-01 | 07258E-01 | 11332E-01 | 6388E-01
16772E-01 | 69980E-01 | 9.7733E-01 | 03147E+00 | s | | | • • | | | | | | | | | | • | | | | | | | 0833 | | - BG | .43719 | | | 77 | 77 | 7 | 7 | 7 | , | 7 | 7 | 7 | 7 | 7 | Υ, | 7 | 7 | 7 | 77 - | | _ | (| • • • • | | • | | #
* | | | | | | | | | EDGE RADIUS | > | 1.60564E+0 | 1.60738E+0 | 1.6110BE+0 | 1.61494E+0 | 1.61689E+0
1.61881E+0 | 1.62070E+0 | 1.62425E+0 | 1.62589E+0
1.62740E+0 | 1.62878E+0 | 1.63107E+0 | 1.63195E+0
1.63265E+0 | 1.63316E+0 | 1.63357E+0 | 1.63347E+00
1.63316E+00 | 1.63266E+0 | 1.6310BE+0 | 1.62879E+0 | 1.62741E+0
1.62590E+0 | 1.62427E+0
ENCE = | ! | Y-D(DEG) | -59.97257 | | 33 | 01 1.24925E+00 | 01 -6.47944E-01 | 1000 | | | 1 -7.7972
11 -8.4564 | 9.1156 | -1.0433 | 1.1092 | -1.2407 | 20 -1.37204E+00 | -1.4376 | ING LEADING | × | 5103E+00 | 5192E+00
5262E+00 | 312E+00 | 535E+00 | 53436+00
53126+00 | 5262E+00 | \$104E+00 | 1998E+00 | 1738E+00 | 423E+00 | 1250E+00
106BE+00 | 2880E+00 | 349XE+00 | .03298E+00
.03106E+00 | 2917E+00 | 2562E+00 | 247E+00 | 2109E+00
1986E+00 | OIBBOE+00
AXIAL DIFFER | ! | > |
00000 | | 26 of | -7.55709E-01 | -7.03540E- | -5.99865E- | -5.48414E-1 | -4.46416E- | -3.95905E- | -3.45735E-(| -2.95915E- | -1. 97754F-(| -1,4B616E-C | -1.0023BE-C | -5.22190E-(| -4.5650BE-(| R. 96109E- | 1.36114E- | 1.82211E- | 2.73175E-(| 3.18047E-(| 3.62515E-(| 4.50252E-(| 6.93528E-0
5.36413E-0 | 5.78909E-01 | 9.41041E | SURFACE | | 6.62752E-0
7.04111E-0 | 7.45101E-(| B. 26010E- | 8.65946E-(| 9.44B37E-0 | 9.83805E-01
1.02247E+00 | 1.060B3E+0 | POINTS DESCRIBING | 7 XG. | 1.9 | 8.5
7.7
8.8 | | | | | 7 7 | 7 7 | 77 | 7 | 77 | 77 | 17 | | 77 | 77 | 77 | 77 | - TO EDGE | | T FIMC. H | .00000 | | Page | * | | £ 9 | ! ; | 8 6 | R P | \$ | 4 4 | \$: | ŧ & | \$ | NIO. | POINT | | | | | | • | | - | - | • 🗝 • | | ^ | 4 14 | ~ ~ | ~ ~ | | 1 | ~ ~ | 31
LEADII | i | POINT | - | | | | | 702 | - | - | 767 | - | 7% | | | 862 | | 893 | |
! | 1.954 | - 984 | | | 043 | - 220 | | 107 | 8 | 159 | 187 | | - | 243 | 270 | 298 | 324 | | _ | | 403 | 424 | 2 | | | 2 | × | | 8 | | | | | | | | | | | | | | | | | .37518 | 127 | 9 | .41777 | | .43933 | 44170 | | .48302 | | .50516 | .52749 - | | .55001 | 57773 | | .59563-1.014 | .61872-1.043 | .64200-1.073 | | | .68910-1.130 | .71293-1.159 | .73694-1.187 | 310 1-0117 | | .78548-1.243 | .81001-1.270 | .83470-1.29B | .85956-1 | 26.1-1.36 | | .90974-1.377 | .93505-1.403 | .96051-1.429 | .98611-1.454 | SECTION NUMBER | | SPECIFIED CHORD | | | Y= 1.6150E+00 | | | | | | | | | | s | 88 | 3.8 | | | | | SB63549 | | | HB69784 | | 6672889 | 90034 - 37 | | 45 790B7 | | . B21B4 | 47 85282 | | 7088381 | 73 - 01482 | | 5794586 | 2297692 | 69-1.00801 | | 7 | .77207-1.07025 | 79199-1.10141 | 81173-1,13258 | 70177 | 7.7.1.193/0 | .85068-1.19493 | .B6989-1.22611 | 88894-1.25727 | . 907E3-1. 2BB41 | 10012 1-73020 | | .94514-1.35062 | .96357-1.38168 | .98186-1.41272 | 1.00000-1.44373 | PI 0F | i | BLADE OF SPI | HOW MANAGEMENT AND | | -1.0349E+00 | | | | | | 010 | AXIS | XIS) | OF X | 1.40564E+ | 1.52198E+00 | 1.35603E+ | | | | | H274. 60611. | 12101 | | .12249 .51848 | | 12350 .54066 | 37073 20701 | | 12408 .58445 | | 12364 .60606 | 12270 . 62747 | | 12128 .64870 | 170AA | | 11700 . 69057 | .11415 .71122 | 11083 | | | 277. 67201. | 197. 60860 | 09293 .811 | | | 08128 .850 | 07479 .869 | 988. /8/90 | 06052 | | | . BS140 | .03599 .963 | . 00720 | .01761 1.000 | \$ | | REFER TO A B | | | £ | | 5 | a 2 | | | ABOUT CENTROLD | WITH CX | WITH (3) | SURFACE | | .01136E+00 | 31772E-01 | | | į | | | | ž | -55.308 .1 | | 55.122 | | - | ٠ | | | • | | 54.457 | | - | £. 239 | - | | | | | • | 280 | | • | • | • | • | -67. R87. CB- | ٠. | • | • | • | • | | | | RESULTS | 00000000 | Ş | 42 CENTERED | -
P | | MBOUL CENTROLD | | | 'S OF AREA ABOUT | (AT 34.420 | Ř | ¥ , | T | .546366+00 -1. | T | | | į | | 38 66904-55.715 | - 30006 | | 73270 | | 9976419- | 77 - 70KAB-E4 077 | | 74 82661-54.829 | | 61 85757-54 | 48 - 888338-54, 573 | | 3691906- | 74 - 04042-54 747 | | 98005 | .66497-1.01036-54.134 | 48484-1.040ES-54.030 | | ., 708/2-1.0/063-53.94. | .73059-1.10060-53.817 | .75246-1.13044-53.706 | 77433-1.16016-53. | | 7961-1.187/3-33.196 | 81808-1.21920-53.335 | 83995-1.24851-53.196 | 86182-1.27766-53.049 | BRT70-1 - TOKKA- | | - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | ,92744-1.36416-52.576 | ,94931-1.39266-52.410 | 97118-1.42099-52.240 | .99306-1.44914-52.068 | | | RESULTS - ALL | 8 | - 3.72251E+00 | - 1.86126E-02 | | 1 | | - 3.51541E-01
- 1.66541E-01 | 38964E-01 | COND NOTEN | 5.15302E-01 | 779456-03 | | - | • | | | | į | . 40250 | . 42438 | 777 | C701-1 | .46812 | | . 4B999 | 4010 | : | 53374 | | . 55561 | 57748 | • | .59936 | 76153 | | .64310 | 49. | 787 | | 8. | .730 | .752 | *17. | • | R | | .83 | 198. | 788 | | 3 | . 726. | 6. | .971 | .993 | | | HENSTOWN, RE | 9 6198881888 11 | BLADE CHORD | L. E. RADIUS | SECTION AREA- | | SECUND HUTEN | # - | | PRINCIPAL SECOND NOVENTS | 1PX - 5. | • | SURFACE | -1 A1880E+ | -9.65981E-01 | -9.1323E- | | | B . | £ 4 | 8 | - SB | 7, 24 | 8 | -> 55 | 13 | ** | 80 4 | | ₹ ?÷ | •• | . 29 | ; 32 ; | 8 | | ;
; | •• | •• | 4
2
• | ! !
!! | 15 | •• | •• | • • | * * * | `
*
* | 8 4 | • | \$
* | %
• | | . 44 | 7. | ‡ | • | ;
% | • 22 | | | | z | ند | 28 | | | | | æ | | | £ 9 | ! - | . 41 | ń+ | | 23a | _ | | | | _ | - | | | _ | _ | | | | _ | - | | • | | - | _ | | _ | | | í
 | _ | · | | | · | ¥
 | | | | ¥0. | 043 | 280 | - zi | _: | _ | 200 | 238 | 276 | 314 | TSI TSI | | 8 2 | 27. | 191 | | * 5 | .40 | | 7 5 | <u> </u> | 299. | | 95 10 | | | | | | | | | 1000T | OF CHORD | C. OF CHOR | OF NEAN LI | | | | | | | | | | | | | | | | | 5 = 34.420 | | | | DINATE DAT | ž | 81100. | 16610. | 4/860. | 65/20 | 07770 | .0/649 | .09547 | .11454 | .13371 | .15300 | 17241 - 351 | | - 96161. | .21166 | .23151461 | | DINATE DAT | 78187 | | . 1/1/2: | /96 90242. | .31259602 | | RESULTS, OUT 6-25-95 10:23a | | | | | | | | | A COACTIV | A FRACTION | K. AS A FR | A FRACTION | _ | • | E | | | | | | | ш | | | | | | | TO (X) AX | 910 | CEN AXIS | (Y) AXIS) | SURFACE COORDINATE DATA | = | 15 .00441 | 4103150 | 3506719 | 25 - 10266 | | 13/72 | B6172% | 5320778 | 1024257 | 5627670 | 72012 06 | | 9 34455 | 1437802 | .3110341119 | | SURFACE COORDINATE DATA | TA474 - 4440R | | .358324/661 | 7887150887 | .4049354086 | | ULTS.OU | | | | | 0.0000 | можновини | | ا ۾ | E) | CONFSS AS | HALF-THIC | THICK. AS | OF SECTION | NC BEEFED T | ECTION OF | MANAMANAMA | | | | | | EADING EDG | | | OID | | | | CIPAL AXIS | BOUT CENTR | 4. 420 UTTH | (AT 34.420 WITH (Y) AXIS) | | | .01761 .01642 | .02483 .04141 | .03199 .06635 | .03906 .09125 | | | .05282 .14086 | .05946 .16553 | 06589 .19010 | .07209 .21456 | | | .08372 .26309 | .08909 .28714 | .09414 .311 | | | • | | | | | | RES | | 2 . 20140 -58.40871
3 . 40143 -55.93528 | | | CTDCOM INC | BOWNSON | | THET ANGLE | Contain Mich | WITHIN THE | TRAIL. EDGE | N OF HAX. | (MERIDIONAL CHORD OF SECTION) | | BLADE HAVING A MERIDIONAL CHORD PROJECTION OF UNITY | CHAMMEN MARKIN | | | | | | LOCATION OF CENTROID RELATIVE TO LEADING EDGE | | . 6 | SECOND HOHENTS OF AREA ABOUT CENTROID | _ | , pa | • | ANGLE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS = 34.420 | PRINCIPAL SECOND HOMENTS OF AREA ABOUT CENTROID | | | NE DATA | MICE THICK | | | | | | | | | | | | | | | | | MEANLINE DATA ANGLE THICKNESS | 1 | | | | 56.484 .11077 | | | -59.97257 | -58.40871
-55.93528 | -54.45367 | -53.46664 | -52.06808
EMETRY ON | MANAGEMENT | | | | | | | | 1 14 - 27 | MERIDIONAL | N NORMAN MANUAL | 7072 | | -55.B16 | -7.904 | | ENTROID REL | R = .4982; | YBAR =763B0 | S OF AREA | 0175 | IY00833 | 0119 | INATION OF | OND MOMENTS | | * .00014 | MEANLINE | - | 0 .00000-59.973 | 803774-59.B32 | 307526-59.689 | 0744211256-59.540 | | .0962914964-59.365 | 618648-59.220 | 422307-59.044 | .1619125941-58.854 | .1837829545-58.648 | ACA 820-05177 - 80 | | 336662-58.178 | .2494040169-57.915 | 743639-57.638 | | E A N L I L | | 765.16-2/0/4 41842. | .3150250466-57.060 | . 33689 53823-56. 769 | .3587657144-56.484 | | | 00000 | 2016
1416
1416 | 60071 | .79992 | 1.00000
HC11DEACE C3 | ************************************** | | A1 =-59.97 | BETAZ =-52.06 | . 0705 | | . 550 | W = 2.1144 | 1 175h DEG1 | HAVING A | ниминини | DI ARE CURON | | STAGGER ANGLE | CAMBER ANGLE | TION ADEA | ATION OF C. | XBA | Æ | TABILITY ONO: | ž | : ≧ | IXA | RE OF INC. | NCIPAL SEC | IĐ | ΙĐ | , | | .00880 | .03068 | .05255 | 0744 | | .0%2 | .11816 | .14004 | .1619 | .1857 | 20648 | | .22753 | 242. | .27127 | | × | | 1542. | Jele. | . 130 | .3587 | | | - | 0 M | * | 10 × | 9 200.0 | MARKA | | BETAL | E 5 | ž ,_ | Z. | ~ | 8 | AMOUN | BADE | MANA | 8 | Ì | STA | ş | 2 | ž | | | 38 | | | | ¥ | £ | | | POINT | 2 | - | 8 | m | • | ٠ ، | io. | • | 7 | • | • | • | 2 | = | 12 | 11 | | POINT | : | : | <u> </u> | 2 | 11 | | 25 . 553.73 - 553.89 - 281.750.7 259.40 22.7668 25.575 - 594.974 - 581.6607 259.40 22.7668 27.777 - 1.0054 - 581.6607 257.00 25.5708 25.5708 - 1.0054 - 581.6507 257.00 25.5708 25.5708 - 1.0054 - 581.6507 257.00 25.5708 25.5708 - 1.0054 -
1.0054 - 1.0054 - 1.0054 - 1.0054 - 1.0054 - | | .66667 -1.14694 -57.65381 .28674 | .68889 -1.18196 -57.54808 .29201
.71111 -1.21683 -57.43946 .29913 | 73333 -1.25156 -57.32721 .30808 | | .80000 -1.35480 -56.96109 .34599
82222 -1.38889 -54.82685 .36055 | .84444 -1.42279 -56.68638 .37341 | .86667 -1.45651 -56.54021 .38455
popps -1.49004 -54.38889 .39397 | .91111 -1.52337 -56.23299 .40169 | .93333 -1.55651 -56.07309 .40768 | . 97778 -1.62218 -55.74372 .41454 | 1.00000 -1.65471 -55.57554 .41540 | PATA BOTUTE | | POINT FRAC. M Y-D(DEG) | 1 .0000 -61.56413 | 2 .20175 -60.99379 | 3 .40202 -59.14635 | 5 18016 - 56.96012 | 6 1.00000 -55.57554 | 1 STREAKSURFACE GEOFETRY ON STREAKLINE NUMBER 9 | MONTH HAND AND AND AND AND AND AND AND AND AND | BETAL =-61.564 (BLADE INLET ANGLE) | BETAZ =-55.576 (BLADE CUTLET ANGLE) | YZERO = .00500 (BLADE LEADING EDGE RADIUS AS A FRACTION OF CHURD) | YONE00500 (BLADE TRAIL, EDGE HALF-THICK, AS A FRAC. OF CHORD) | Z = .5500 (LOCATION OF MAX. THICK. AS A FRACTION OF HEAN LINE) | CORD • 1.8995 (MERIDICHAL CHORD OF SECTION) | NORMALIZED RESULTS - ALL THE FOLLOWING REFER TO A | BLADE HAVING A MERIDICIAN CHORD PROJECTION OF UNITY | POTENTIAL MANAGEMENT REPORT RE | BLADE CHORD = 1.9093 | STAGGER ANGLE =-58.854 | OBO N 3 CARACT | | SECTION AREA 12398 | | XBWR = .478/1
YBWR =84868 | SECOND MONEYTS OF AREA ABOUT CENTROID | | IY = .00710 | | ANGLE OF INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS = 31.210 | PRINCIPAL SECOND HOWENTS OF AREA ABOUT CENTROLD | | IPY = .02625 (AT 31.210 WITH (X) AXIS) | | POINT MEANLINEDATA SURFACE CORDINATE DATA | | 1 .00953 .00000-61.564 .01909 .01794 .00453 .00115004 | 2 .0313804030-61.541 .02380 .0418403463 .02092045 | 19 070 - 07070 - 07270 - 02848 06573 - 04070 - 087 | | 127 12079 12078 12078 12078 12078 12079 | \$ 691 EDBO. 1515 1134515192 .0803-61.41 .03771 .1134515192 .08033 | 110 - 01001 - 00001 - 00001 - 00011 | 6 .1187220101-61.389 .04222 .1572519090 .10019211 | | Page 27 of 32 | |--|--------------------|----------------------------------|--|---------------------------------|---------|---|----------------------------------|---|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-------------|---------|------------------------|-------------------|--------------------|--------------------|--------------------|---------------------|---|--|------------------------------------|-------------------------------------|---|---|--|---|---|---|--|----------------------|------------------------|----------------|---------|--------------------|----------------------|------------------------------|---------------------------------------|----------|-------------|-----------|---|---|-----------|--|------------------|---|-----------|---|---|--|-----------
---|--|-------------------------------------|---|------------|---------------| | .0260340265
.0739946624
.1223552926 | See 101TV | 98 SOLIDITY = 1.2012 | SOLIDITY | OF CURV | 5.7138 | 2.6383 | 4.2124 | 5.1650 | 5.4669
p.eer | 2.7113 | 18.5225 | 3.7456 | 2.5451 | 1.88 | 1.1738 | OF CURV | 3706 1 | 1.7451 | 2.6288 | 5,3348 | 16.8770 | 18.4894 | 0.0907 | | | 7.66867
7.66755
7.66585 | . 66360
. 6607B | . 65353 | 7.64910
64910 | .63869 | 2/200. | 7.61931 | 7.60414 | 7.59597 | 7.57865 | 7.56956 | 10N = 2.398 | N | œ | | - | | | | | 47402 | | | | | Y-50 R O | • | | | | 42097 | | ۱" | | | 25411 | .51680 | | 71394 | . 04525 | 92426 | .04161 | 17195 | 23690 | 36634 | 1.43071 | | YSEMI | 7 | 576BC-1 | 1.59152 | 50575 | 1.59714 | 1.59904 | 72009. | 1.60455 | 1.60626 | .60786
2007 | 1.61071 | 1.61193 | 1.61298 | 61386 | 1.61507 | 1.61538 | 1.61542 | 1.61514 | 1.6146B
1.61402 | 1.61318 | 1.61099 | 99609.1 | 1.60661 | PENTAT | 2 DEVIATION = | 2 DEVIAT | | | | | | | | -61.00506 | | | | | Y-D (DEG) | | | | | -58.65587 | | - 1 | | | 222
7887
7228 | | | | | | | | | | | | XSEMI | | | | | | | | | | | | | | | | | -1.11300 | | | | | | | 2 | ITEMTION | ITERATION | <u>-</u>
≻ | .00000 | 19- 64 1BO: | 12292 -61 | 20457 -61 | .24526 -61 | 32622 -61 | 36643 -61 | .44610 -60 | .48550 -60 | 09- 6259S | .60166 -59 | - | 03- 07047 | 65 (£17). | .71476 -59 | .75185 -58
.78867 -58 | | BC- 29198 | B6- 58/48. | | | 7.68503
7.6844
7.68319 | 7.67865 | 7.67141 | 7.66677 | 7.65551 | 7,64165 | 7.63379 | 7.61625 | 7.60660 | 7.58560 | 7.57430 | | 19EH | | | | | | | | | | | | | | | | | 7.41913 | | | | | | | • | JOHN CE | | | | | | | | | 20000 | | | | | FRAC. M | | | | | . 46667 | | | | | 888 | # # I | | | | | | | | £ # | \$ | | POINT | • | - 7 | n | - 4 | • | 7 | | 2 | = | 2: | 2 2 | : 12 | 2 | 2 | : : | 8 | 2 23 | នេ | * X | 8 | 7 8 | 8 | នគ | - | SINEATS | | POINT F | | | | | | | 2: | | | | | POINT | | | | | : 2 | | | | | | | | | | - | | | | | | - | _ | _ | 00 00 | Ç | | | | | | | .B6795 | | | | | | | | | | 2082 | • | Ř | ŀ | | 17.3310
16.5654
15.6498 | 14.6315 | 12.4635
11.3861 | 10.3477 | 8.473
8.8516 | 8.4209 | 8.0183 | B.0313 | B. 5666 | 10.0620 | 11.0452 | 12.14 | 14.6448 | 15.9800 | 17.2874 | 19.4126 | 20.0988 | 20.7904 | 20.7281 | 20.3819 | 18.9352 | 17.9254 | 16.7980 | 15.7441 | 14.1722 | 13.5B69 | 13.1061 | 12.4038 | 12.1646 | 11.9927 | | | | | | | | | | ŭ | -1.13098 | -1.09147 | -1.01221 | - 97239 | 89 226 | . 81124 | 77037 | 68768 | 182 | 60365 | 51821 | 4749 | - 38731 | 2523 | 25310 | 20760 | 11539 | - 06866 | 02152 | | | . 46340
. 46340 | .51000 | .62357 | .6730B | 75381 | 77438 | 77572 | 72417 | 67854 | 1981 | 49830 | .4465B | 36114 | .32742 | .29%69 | .26224 | 25124 | 23916 | .23808 | 24030 | 25444 | .26676 | .2B219 | 2,29830 | 32484 | .33526 | .34379 | .35516 | 35801 | . 35895 | | | | | | | | | 80 | 22 | 7,42336 | 7.44398 | 7.48220 | 7.49986 | 7.53228 | 7.54707 | 7.57384 | 7.59694 | 7.60715 | 7.61649 | 7.63266 | 7.63953 | 7.65098 | 7.65561 | 7.66275 | 7.66531 | 7.66850 | 7.66916 | 7.66921 | | | .688%
.54048 | .22025 | .85426
.64825 | 42353 | .91509 | 60809 | .0603B | .7692B | .20893 | 71526 | 50132 | .30762 | 97331 | .82860 | .69591 | .45726 | 34661 | 13433 | .02990 | .92469 | 70407 | .58952 | .46616 | 33472 | 04934 | 88968 | | 40964 | 23997 | .06808 | | | | | | | | | STREAMSURFACE | 7. | 1.60661 | 1.53309 | 1.38678 | 1.31401 | 1.16924 | 37.5 | .95462 | . BE 392 | 74413 | 67508 | 53859 | 47114 | 33,739 | 221.22 | 13951 | .07382 | .05737 | 1229 | 18851 | | | in in in | ķ ķ | ķķ | Ņ, | ķķ | ķ | ا أما أ | ķ | ķ | ĶĢ | Ķ | Ķ | ήψ | rio I | ņ | Ď. | ò | 'n | è | ĶI | 1 | ķ | Ķ | ķ | ij | ķ | ij | į | Ņ | 47232 -52 | | | Y-D (DEG) | 136.10 | 40871 | 93528 | 46664 | 80890 | 중 | × | | | | | | | | | | | | | | | | | .05271 | | | Į | | 152 | • • | 17.78 -1. | .1- | | POINTS | FRAC. H Y-E | 98 | Ŗ | ķ | 79992 -53 | -52 | COORDINATES | 11 | 42235 -1 | 44275 | 48099 | 49804 | 521% | 24722 | 57516 | 58783 | 61064 | 62079 | 63B69 | . 54647 | 65977 | 4554 | 67436 | 67.783 | 68274 | 68417 | 7 | - | | .044407646
.0666711436
.0888915203 | 122 | 755 | 8 | 1 | 3 | Ξ | ВИ | 16 | 8 2 | Ŧ | 31 | 3 = | 12 | 20 | 3 | | | | | | | - | - (| . w | | ς, ι | | | • | | = | 9. | • | | | | _ | CARTESIAN | | | ~ . | : .: | ۲. | : .: | ٠. | ٠.• | . - . | | · • · | | | | | | | ~ ~ ' | ٠' | ٠.• | 1 | | _ | _ | K) | 4PF | LINT | |-----------------------------|--|--------------------|----------------------|-------------|------------------------|--------------------|--------------------|---|------------------------|-------------------------------------|--------------------|------------------------|--------------------|-------------------|-----------|--------------------|--|--------------------|--------------------|--------------------|------------------------|-----------|--------------------------|-------------------|--------------|--------------------------|------------|-------------------------|-----------------------|-----------------------|------------------------|------------------------|------------------------------|-------------|-----------------------|-----------------------
-----------------------|------------------------|------------------------------|-----------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------------|---------------|----------------------------------|---| | | | | | | | | | | | | | 986 | 5 | 72 | | | | | | | | | | | | | | DELX . | | ₩. | BZ17. | 6383 | 9790 | 1650 | 1955 | 5225 | 7456 | 5451 | n n | 1738
2965 | 7451 | 910¢ | 346 | 48% | 5634 | 9092 | 7523 | 245 | 22.7700
22.1648 | 456 | 7451 | 8342 | 9302 | 5135 | . 9643
4983 | . 1078
. 7853 | 5254 | | | | | | | | | ſ | 72 | | | | | | | | | | | | | | .0984 NEW | | 8
5 | 115. | • | | | .31837 28 | | | | | | | | | | 34572 20 | | | | | | | 2 1 | 23 | . E | 40169 14 | 768 14.
1197 13. | 1454 13 | | | | | | | | _ | . 1 | 22 | | | 90 | 38 | 9 9
9 9 | 8 | \$ \$ | 8 | 888 | 88 | 8 9 | 888 | 8 8 9 | • | | 93-X-193 | | | | | | | | | | | | | | | • | | | | | - | | | - | | 252
252
3. A. | | | | | | | | | | STREAMSUNFACE | | | | | | | | - | | | | | | 1.62643E+00
1.62519E+00 | | - # | | Y-D (DEC) | 95.19 | 99 -61.51 | 平
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 54 41.30 | 52: | 4.0 | 40 -60 BE | 50 -60.47 | 8 .
8 .
8 . | 20 - 59 BI | 39 -29 76 | 76 -59.16
85 -58.97 | 28.80 | 27 -58.6%
65 -58.51% | 58 -58.39
27.58 | 74 -18.16 | 26.76 | 24.75.75
27.75 | # -57.65381
\$4 -57.54808 | 57.45 | 13 -57.21 | 55 -57 .08
-57 .08 | 28.95 | ŔŔ | ķķ | ķ | k f | į | | G | ; : | : R F | 88 | 22 | | • | | | æ | .43531E-01 | 409 IBE-01 | 39411E-01 | 3407EE-01 | 34288E-01
32442E-01 | 30540E-01 | 26770E-01 | 24904E-01 | 21332E-01
1966SE-01 | . 18102E-01
. 16460E-01 | 14202E-01 | 13212E-01
Axial Dif | | ≻ | 00000 | | | | 28582 | | | | | | • | ٠. | | | • | | -1.04104 | | 7 -1.14694 | | 6 -1.28613 | 77 | 7. | 77 | 1 -1.52337 | 77 | 77 | • | | H Y-D(DEG) | . 4 | 37 | ا مِا مُ | 6 -54.94012
0 -55.57554 | £ | | = | | 28 of | 44 | | | 7 | ? ? | • • | 11 | ? • • | * * | * * * * | | | | FIRE. | 86 | 4 | 9990 | === | 1555 | 2002 | 2222 | 5666 | 3111 | E E | | | | | | | 90009 | | 68889 | | • | • | | • | | 255 | B77778. | | DATA POINTS | FIBAC. | | 20173 | | | ESIS | | 12
1- | | Pag | - | | | • | | . ~ . | , , | N W | n n | ~ ~ . | NP | E SI | | POINT | | N M | 4 N | • | . 60 (| ` 2 | = 2 | 12: | <u> </u> | 2.5 | 2 2 3 | \$ 8 | 121 | ឧឧ | * 10 | 121 | 3 8 | 8 8 | R R | R | 5 IS | 3 A | i Pi | 3 | + 4 | \$ \$ | £ 1 | ; | DATA | POINT | | - 11 | 7 🖈 | n • | CART | | POINT | | - | | | | | | | | | | | | | - | - | | | | | | | | | | | | мини | | 1 41216400 | 1.0121540 | ļ | | | мжееме | | -0 2014E-01 Va | | | | | | | | ; | ₽ ≻ | 3425+00 | .52473E+00 | 76ZE+00 | 105E+00 | 306E+00
534E+00 | 953E-01 | 45XE-01 | 181E-01 | 541E-01
423E-01 | 450E-01 | 367E-01 | 429E-01 | 820E-02 | 782E-02
684E-02 | 791E-01 | 218E-01
171E-01 | 672E-01 | 41369E-01 | 71351E-01 | 696E-01 | .63081E-01 | | <u> </u> - | 4.49F-01 | 765E-01 | 3506+00 | . 13410E+00 | 375E+00
277E+00 | 124E+00 | 654E+00 | | | | | | | | | | | | 8848888BB | | Y= -0 701/ | | | | | | CENTROID | CX) AXIS | 2 | | - | | | | | •• | | • | en en | 41 | nn | ~ - | • • | 4 | 7 | 7 7 | 77 | 7' | 6 to | φ̈́φ | , e | i | | ٦ | ۲, | 77 | 77 | 77 | 77 | 7 | | | | | | | | | | | | Миновин | | CENTEDEN AT 1 | Ē | | CENTROID | | | AREA ABOUT C | | HIIM OU | SURFACE | -9.45103E- | -9.07553E-01 | 8.32374E- | 7.56979E | -7.19153E-
-6.81218E- | -6.43155E- | 5.66570E | 4.89259E- | -4.50305E- | 3.7175BE- | -3.32153E-
-2.92325E- | -2.52272E- | 1.71486E | -1.30739E-
-8.97474E- | 4.85026E | -6.9%00E-
3.4777E- | 7.68173E- | 1.61689E- | 2.47603E- | 2.90944E-
3.34536E- | 3.78378E-01 | | * X | 4 4470TE- | 5.1135BE- | 5.56150E-
6.01182E- | 6.46431E-01
6.91898E-01 | 7.37573E- | 8.29538E | 9.22285E- | RADIUS | | 81 | 381 | 88 | 88 | 88 | 8 | 2 | | | *************************************** | 8 | | | ē | ABOUT | | | 8 | 5 | 5 | ₩
~ | . 00+3690 | 54627E+00 | 766E+00 | . 00-354 | 556E+00 - | 845E+00 - | 646E-01 | . 10-3599 | 173E-01 | 763E-01 | 226E-01 | | 269E-01 | 76E-01 | 24E-02 | 160E-02 ·
594E-01 | 121E-01 | 108-01 | 948E-01 | 217E-01
182E-01 | 537E-01 | : | # ≻ | 10-10-1 | 23E-01 | 128 + 00
138 + 00 | -1.07864E+00
-1.14372E+00 | 159E+00
527E+00 | 24.00 | 104E+00 | | > | 40742 | 1.60513E+00 | 1.60877 | 1.61065 | 1.61631 | 1.61813 | 1.621551 | | | | - 3.62664E+00 | CO-3C11. | | • 4.4732E-0 | TS OF AREA | 50224E-01 | - 9.23697E-02
1.51100E-01 | SECOND HOPENTS | 3.41769E-01 | Z-801E-04 | | - | | | | | _ | | | •• | | | | | - • | 7 | 77 | 77 | 7 | T | 7 7 | 77 | • | | | | | | | | | ING LEADING | × | | 45918E-01 | 54%-01
6990E-01 | 7234E-01
7284E-01 | 71328-01 | 2438-01 | 2515E-01
160EE-01 | | | Beetigepies | CHORD | | | SECTION AREA- | BECOND HOHENTS | | | INCIPAL SE | X | • | SURFACE | 9.13212E- | -8.67810E-01 | 7.770B6E | 4.86580E- | 6.41454E- | 5.51550E- | 4.6223E | 3.73642E | 3.29645E-
2 BESTOF- | 2.42290E | 1.98944E- | 1.12922E- | 2.78059E- | 1.43983E-
5.63578E- | 9.80642E | 1.39509E- | 2.21598E- | 3.0262BE | 3.42/51E-
3.82616E- | 4.22227E-
4.61585E- | 5.00695E- | | SUFFICE N | . 70107E | 6.1656BE | 6.54721E-
6.92646E- | 7.30348E-01
7.67833E-01 | 8.05108E- | 8.79046E- | 9.52201E- | S DESCRIBING | 9 | į | 7 | | | | | | | | NO SECTION ASSESSMENT OF THE PERSON | BLADE | - | ; | | 38 | | | £ | | | . 9 | - | N P | * |
. • | ~ = | • 9 | 1= | 12 | 7 | 2 | | | | | | | | | | | 3 5 | | 2 2 | ž | RA | RA | \$ ₹ | 4 4 | # | ŧ ‡ | POINTS | POINT | | . ~ . | n t | an 👁 | ~= | 10 | 2 = | | a | - | | | | | | | | | | | | | | | | | | | RESULTS. OUT 6-25-95 10:23a | .12010252 | .14008293 | | | .18023374 | .20043414 | .22073454 | .24113494 | | SURFACE COORDINATE DATA | .26164533 | .28226572 | .30299611 | 427CF | | .34481eBe | .36590724 | .38710761 | .40843797 | .42988834 | 45144 - 870 | | .47317905 | .49502941 | .51702976 | KT015-1.011 | | .56142-1.046 | .58383-1.081 | .60638-1.115 | .62906-1.149 | .65188-1.183 | 4748T-1 214 | | .69791-1.250 | .72112-1.283 | .74445-1.316 | .76792-1.349 | .79150-1.381 | B1420-1 413 | | . B3905-1-2095B | .B6294-1.477 | .88701-1.508 | .91116-1.539 | .93542-1.570 | .95979-1.601 | .98425-1.631 | | N NUMBER | | | -25-95 | | | | | | | | | | COORDINA
Y1 X | | | | | | | | | | | | | | _ | - eerr | F 95.11. | F SPECIFI | | 0UT 6 | .1610122980 | .1847126859 | 7.006 | .zvesa30/24 | .2318934573 | .2553638400 | .2787342204 | .3020045980 | | SURFACE
X1 | .3251649728 | .3482253447 | .3711557136 | 10107 - 40707 | | • /set. | .439266B041 | .4617271631 | .4840775204 | .5062978762 | Koata - aotha | | .5503385846 | .5721589377 | .5938392901 | 41577 - 04410 | 201 | .6367799933 | .65803-1.03442 | .67915-1.06946 | .70014-1.10445 | 72099-1.13940 | 74171-11747 | | .76230-1.20911 | .78276-1.24387 | .80310-1.27857 | .82330-1.31319 | 84339-1.34773 | BICEL 1-722-Y | | .88320-1.41654 | .90294-1.45079 | .92256-1.48495 | .94208-1.51900 | .96149-1.55294 | .98079-1.58676 | 1.0000-1.62048 | E 6 | NORMLISED PLOT OF SECTION MUMBER | A BLADE O | | SM.TS. | . 04662 | . 05091 | | | .05907 | . 06289 | .06653 | . 26995 | | T A
CKNESS | | .07613 | . 07885 | | | | .08544 | . 80780. | .08842 | .08947 | | | . 09060 | B9060 | . 09041 | | | .08889 | . 08763 | .08604 | .08413 | 08190 | | | | . 222.70. | .06985 | .06607 | | | | | | . 77240. | .03726 | .03147 | .02542 | | | NCFORT. | REFER TO | | 2 | | | | | | | | | | N E D A | 60.261 | RESULTS | | | 124098-61.323 | .1623928084-61.238 | 741 17-43064 - 26781 | 56055- | .2060636004-61.005 | .2279039932-60.850 | .2497343833-60.671 | .2715747704-60.473 | | HEANLINE DATA
X Y ANGLETHICKNESS | .2934051543-60.261 | .3152455348-60.039 | .3370759118-59.813 | 4 4 705K - To 150 | | .380/466359-59.369 | .4025870231-59.164 | .4244173875-58.977 | .4462577493-58.808 | .4680881089-58.656 | 48007 - 84444-KB E18 | | .5117586221-58.391 | 5335991761-58.275 | 95285-58.166 | CAC EST-266-50 - 65777 | -CK/BK'- 1 | .59909-1.02291-57.961 | .62093-1.05773-57.859 | .64276-1.09241-57.757 | .66460-1.12696-57.654 | .68643-1.16137-57.548 | 476 TA 19844-E7 478 | 1.1.1 | .73010-1.22976-57.327 | .75194-1.26373-57.211 | .77377-1.29755-57.089 | .79561-1.33120-56.961 | 81744-1 T4440-54 877 | 207 23-0-001 1-0c-010 | | .86111-1.43113-56.540 | .88295-1.46408-56.389 | .90479-1.49683-56.233 | .92662-1.52939-56.073 | .94846-1.56176-55.910 | 97029-1.59392-55.744 | 90213-1 425BB-55 576 | | | LTS - ALL | | | .14056 | .16239 | 16731 | .192 | .2060 | .227% | .24973 | .27157 | | | .29340 | .31524 | .33707 | 14001 | | .3807 | .4025 | .4244 | .44625 | .46806 | 48003 | | .5117 | 5335 | .55542 | ACT.73 | 7//6. | .59904 | .62093 | .64276 | .66460 | 68643 | 2002 | 780/- | .7301 | 751% | rrsrr. | 79561 | 1744 | 070 | 3,750 | .86113 | .88294 | . 9047 | .92662 | .9484 | .97029 | 7100 | | | DIFENSIONAL RESULTS - ALL RESULTS REFER TO A BLADE OF SPECIFIED CHORD | | | ^ | • | • | • | 2 | = | 12 | 11 | | POINT | 2 | 15 | 91 | | | 2 | 61 | 8 | 12 | 2 | , | | ž | ĸ | % | , | 3 | 8 | 8 | R | ñ | P | | | ř | ĸ | × | Fi | | | | | 7 | 4 | A | ŧ | £ | | - | | | | | ; | • | 6
• | . 83 | 3 | 3 | ÷ | • | 8
•
• | | | • 57 | ÷ | • | . 13 | 98 | | 1 | | | • 16
 • | 3 | | ₽
• | ÷ | . 7 | | ! ? | 5 | î
î | ÷ 4 | ÷ | 66 ~ | ÷ | 1 | 2
2 | • 25 | · 21 | • 65 | - 83 | ÷ 73 | . 37 | | . 72 | ÷ | - 28 | • 01 | • 28 | î | | = 3 8 ¥ **%** = 2 L | | 1 | |---|-------------| | 2 | 1 | | • | 1 | | • | 1 | | • | 1 | | | ı | | - | ۔ ا | | | 10:23 | | | 12 | | | 10 | | | 1.2 | | | 0 | | | - | | | 1 | | | 1 | | | II. | | | ıo | | | 17 | | | 100 | | | 10 | | | 25.95 | | | 100 | | | 1- | | | 1 | | | - | | × | | | × | | | ē | - | | ŧ | 1.4 | | š | 17 | | Ē | 11- | | z | 1= | | ₹ | 1= | | R | 10 | | æ | DECH TO OUT | | £ | 10 | | z | 1 | | ĕ | 1 | | Ħ | 1 | | × | 1 | | 8.7303291510 1.
8.7302991340 1.
8.7303091465 1. | YZERO = .00500
T = .02530
YOME = .00500
Z = .5500
CDRD = 1.4000 | TO COSTO BLADE LADINE DDE RADIUS AS A FRACTION OF CHORD) YZEN C. JOSSO BLADE HAXIMAN THICKNESS AS A FRACTION OF CHORD) YOKE C. JOSSO BLADE FRAIL DEB FALL-THICK. AS A FRACT OF CHORD) Z = JSSOO (LOCATION OF HAX. THICK. AS A FRACTION OF FEAN LINE) CORD = 1,4000 (MERIDIGNAL CHORD OF SECTION) | AS A FRACTION OF CHORD) S A FRACTION OF CHORD) ICK. AS A FRAC. OF CHORD) S A FRACTION OF FEM LINE) DN) | 2 18 28 | .51165-1.06530-63.308 .05588
.53342-1.10847-63.171 .05588
.55519-1.15138-63.035 .05571 | .55835-1.09586
.55835-1.09586 | .48669-1.077
.50849-1.121
.53036-1.164 | |--|---|--|--|-----------------------------------|--|----------------------------------|--| | 20 8.73049089 1.54521
21 8.730490809 1.54523
22 8.73059052 1.5450
22 8.730590457 1.5441
24 8.73069028 1.54418 | NORTALIZED RESULTS BLADE HAVING A HERI MONHHORMHORMHORMHORM M ATE CHIRD | S - AL THE FOLLOWING REFER RIDIOWAL CHORD PROJECTION OF BRENESCHIBERHERSHERSHERSHERSHERSHERSHERSHERSHERSHE | TO A
F UNITY
REPORTEGIA | ** 01 | .576%-1.19404-62.897 .05538
.59873-1.23645-62.756 .05489
.62050-1.27859-62.607 .05424 | .60161-1.18143 | .55231-1.206
.57433-1.249
.59642-1.291 | | 8.7312289970 1.
8.7314689826 1.
8.7317289694 1. | AGGER ANGLE | -63.312 | | · | .64227-1.32047-62.452 .05344 | .66596-1.30811 | 64080-1.332 | | 8.7320089575 1.
8.7322989470 1.
8.7326089381 1. | CATEREN WAGLE = -5.552 SECTION AREA = .09573 LICATION OF CENTRALIA BATLUE | = -5.552
= .09573 | 524 | | | .70852-1.39135 | .66309-1.415 | | STREAMSURFACE II ITERATION I DEVLATION = 2.231 SOLIDITY = .9173 ITERATION 2 DEVLATION = 2.275 SOLIDITY = .8880 ITERATION 2 DEVLATION = 2.275 SOLIDITY = .8880 | XBAR = YBAR = | XBAR = .49105
YBAR =-1.00475 | | R & | .70757-1.44437-61.951 .05015
.72934-1.48507-61.772 .04876 | .72970-1.43258
.75082-1.47354 | .70786-1.456 | | D(DEG) Y-DD R OF CI | SECOND HOHENTS OF | MONENTS OF AREA ABOUT CENTROID | | -> 60
-> 50
-> 70 | .75111-1.52547-61.589 .04723 | .77188-1.51423 | .73034-1.536 | | 1 .00000 .00000 -64.8753559542 -21.9342
2 .022204755 -65.0106058554 -22.6595
3 .044409535 -65.1398755456 -24.2690 | X X | 02404 | | * F | .77288-1.56556-61.401 .04556
.79465-1.60533-61.209 .04376 | .79288-1.55465
.81382-1.59479 | .75288-1.576 | | 14345 -65.2587450322
19179 -65.3629243136 | ANGLE OF INCLINA | INCLINATION OF (ONE) PRINCIPAL AXIS TO (X) AXIS | IS TO (X) AXIS = 26.498 | . Br . B164. | .B1642-1.6447B-61.013 .041B2 | .83471-1.63465 | .79813-1.654 | | 24034 -65.4482433896
28906 -65.5105722602 | PRINCIPAL SECOND | SECOND MOMENTS OF AREA ABOUT CENTROLD | TROID | ŝ | .B3B19-1.6B391-60.B14 .03976 | .85554-1.67422 | .B2083-1.693 | | 33790 -65.5457409255
38677 -65.54951 .06145
43562 -65.51740 .23598 | • XqI | • .03001 (AT 26.498 WITH (X) AXIS)
• .00002 (AT 26.498 WITH (Y) AXIS) | TH (X) AXIS) TH (Y) AXIS) | : ;
; | | .87632-1.71351 | .84359-1.731 | | 48435 -65.44643 .40669
53287 -65.34040 .54922
58113 -65.30478 .66757 | POINT HEA | MEANLINE DATA
Y ANGLE THICKNESS) | SURFACE COORDINATE DATA | , ,
42 4 3 | .90350-1.79938-60.195 .03282 | .91774-1.79123 | .88926-1.807 | | 62907 -65.04506 .74973
67663 -64.86685 .80771 | ē | ٠. | 465 .00104 | *> 54 | | .93837-1.82965 | .91216-1.844 | | Y Y-D(DEG) Y-D0 | .03273 | .02410 | 04147 .02181 | ‡ ! | | .95896-1.86779 | .93511-1.881 | | 13556 77055 -64.47878 .83913 14 | | .02629 | 75240. 88780 | *> 21 | .96880-1.91192-59.546 | -9/750-1.9050-1 | 420 1-31100 | | . 3777B B16B9
. 40000 B62B3
. 42222 90B39 | 5 .09804 | 14052-65.267 .02647 .01
18788-65.363 .03063 .11 | 941 12650. /cFc1 71890.
11196 - 18150 . 08412 - 194 | - | 5 | INLISED PLOT OF SEC | N NUMBER | | -,95362 -63.74915 .64011 118
-,99852 -63.59454 .59623 19
-1.04313 -63.44813 .56233 19 | | .03276 | .1347122864 .10491242 | | DIMENSIONAL RESULTS - ALL RESULTS REFER TO A BLADE | ER TO A BLADE OF SPECIFIED | ED CHORD | | .51111 -1.08747 -63.30764 .53842 20
.53333 -1.13153 -63.17066 .52448 20
.5355 -1.13153 -63.1706 .52053 20 | -> 40 H - 45334 45334 | | 32337 .14654 | BLADE CHORD = 3.06895E+00 | 3.06895E+00 | | | | . 57778 -1.21889 -62.89724 .52656 20 .6000 -1.26218 -62.75550 .54257 19 | 9 .18511 | .03892 | .2028337083 .16740386 | L.E.RADIUS . | - 1.5344BE-02 CENTERED AT | X= -6.7213E-01 Y= | 1.406E+00 | | . 62222 -1.30520 -62.60727 .56264 18
. 6444 -1.34795 -62.45232 .58086 17 | 94
10 .20688 | 42674-65.517 .04084 .2 | 2254741827 .18830435 | SECTION AREA 1.87630E-01 | 1.87630E-01 | | | | . 66667 -1.39040 -62.29100 .59724 16
. 688B9 -1.43257 -62.12362 .61176 15 | => 20
-> 22865 | 47447-65.446 .04269 .2 | .2480746560 .20924483 | SECOND HOHENT | SECOND HOHENTS OF AREA ABOUT CENTROID | 91 | | | 21 2442 - 2020; 10-14744; 11117;
27333 - 151598 - 61,77215 - 65524 14
275784 - 1,54727 - 61,8880 | 24 12 .25042
28 | .04445 | 51274 .23023 | IX = 9.2
IY = 2.3 | 9.23661E-022.30287E-02 | | | | 137777 - 1.59814 -61.40092 .65132 13 .80000 -1.63874 -61.20891 | 95 .27219 | -,56929-65,205 ,04610 ,29 | .2931255962 .25126578 | IXY =-4.6 | IXY =-4.6000E-02 BOTH THE SECOND MOMENTS OF AREA ARLIT CENTROID | ONTENTO | - | | . 82222 -1.67901 -61.01318 . 66068 13
. 84444 -1.71896 -60.81383 . 66429 12
. 86667 -1.75858 -60.61093 . 66742 12 | POINT HEAN | LINEDATA
ANGLE THICKNESS | SURFACE COORDINATE DATA | IPX = 1.1 | 1.15299E-01 (AT 26.498 UITH | ITH (X) AXIS) | | | . 11 11 -1.83683 -60.40456 . 67007 12 | 14 .29396 | 61624-65.045 .04765 .3 | .31556 60619 .27236 626 | <u> </u> | 13E-05 (A) 26.47E | (1) HAIS) | | | 11 59276. 198164 -59.98165 .67393 11 59556. 1-91375 -59.76528 11 11575 - 69.76528 | 15 .31573 | 66283-64.867 .04908 .X | .3379565241 .29351673 | NO X | . | X Y | | | . 97778 -1.95171 -59.54576 . 67586 11 1.00000 -1.98934 -59.32318 . 67610 11 | 26
16 .33750 | 70904-64.676 .05039 .3 | .3602769826 .31472719 | 4 | 1.41316E+00 | | | | DATA POINTS | 17 .35927 | 75484-64.479 .05158 .3 | .3825474573 .33600765 | | 1.28361E+00 | | , | | POINT FRAC, M Y-D(DEG) | 75 18 .3810 4 | B0025-64.282 .05262 .46 | .4047478882 .35733811 | | 1.15255E+00 | | | | .00000 -64.87535 | - 19204 19 | B4524-44.091 .05354 .4; | 4268883354 .37873856 | 7 -4.67054E-0
8 -4.35262E-0 | 1.0203ZE+00 | | | | 2 .20000 -65.51740
3 .40000 -64.09151 | 20 .42457 | BB987-63.914 .05431 .4 | .4489687793 .40019901 | 9 -4.03512E-01
10 -3.71814E-01 | 8.87477E-01 | -4.53108E-01 B.64927E-01 | 10 | | ,60000 -62,78551
,80000 -61,20893 | 21 .44634 | .05493 | .4709892203
.42171946 | | 7.54802E-01 | | <u>/14P</u> | | 1. COOM - COO | 22 .46811 | 97817-63.595 .05540 .4 | .4929296585 .44330990 | 13 -2.77106E-0 | 6.2317BE-01 | | HINI | ICT 4PRINT 90822 90822 96202 01526 06797 17173 22279 27330 32326 28567 31738 34917 34917 41296 44496 47703 50916 57360 -. 62432 -. 67978 -. 93480 -. 98937 -1. 09723 -1. 10973 -1. 20331 -1. 25547 139490 139636 139636 139738 140737 140734 14173 14163 32825 32825 12876 12887 12887 18872 18172 9.46417 9.45318 9.45390 9.4251 9.43642 9.43048 9.42348 9.42348 99682 99682 99683 99683 99683 99683 99683 99683 99693 R POINT PB86255188 72 28490 28490 28491 284 7.6947 7.7647 7.7647 7.7647 7.7647 7.7647 6.62711 7.62711
7.62711 22 39703 41642 416 7,4477 7,4477 7,4477 8,100 8,1 TREAMSURFACE 20470 7.7077 7.7077 7.7077 7.7071 7.6111 7. . 57277 . 57287 . 67843
. 67843 . 6784 -64.87535 -65.51740 -64.09151 -62.75551 -61.20893 . 1956 . 1017 . E POINTS POINT 10:23 .1125 .00401E-01 .52567E-01 .10237E-01 .01808E-00 .07125E+00 .17607E+00 .17607E+00 .2772E+00 .2772E+00 440825-01 343185-01 343185-01 343185-01 343185-01 3441055-01 1179185-02 32344-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 323745-01 \$342 2655 2655 2655 2655 1157 1157 2675 2675 7 8 5 9-RESULTS. 1,40013F (00162F (00178E (00179E (10079E (1007 28078E-01 28078E-01 2030ZE-01 3968E-01 3968E-02 1130GE-01 1130GE-01 17753E-02 17753E-02 17754E-02 17754E-01 17754E-0 .69871E-01 .26064E-01 .81864E-01 .92271E-01 .92271E-00 .10107E+00 .104687E+00 .20826E+00 .20826E+00 n n y y - - n h h h - - y h h h + + h h h h + 86018E 86623E 86622E 86623E 86622E 86 5 ## APPENDIX B FAN ROTOR BLADE STRESS/VIBRATION SOLID MODEL ANSYS OUTPUT GRAPHICS R. OP. O. STRESS DISTIBLITION STEADYSTATE (a) 12, 000 RPM Suction Side (a) 9, 000 RPM MECHANICAL SIGM.1N = 16,600 PSIDESIGN SPEED FOR 110-1.) SMN = -14275-14275 =29548 -9406 -4537 332.468 5202 14940 10071 19810 24679 29548 SMX Static Stress API Fanl 12000rpm 1psiP.S. StressStiffn Static Stress SMX = -2655 -2655 1003 4660 8318 11975 15633 22948 26606 API Fanl 12000rpm 1psiP.S. MECHANICAL DESIGN SPEED FOR CI-04 SMX = 4. SMX = 4. -3. -3. -1. -1. -4. API Fan1 Orpm Modal ## REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suits 1204, Adjuston VA 220024302, and to the Office of Management and Burdent Pacific Project (1704-0188) Washington DC 20503 | Davis Highway, Suite 1204, Arlington, VA 22202-4 | 302, and to the Office of Management a | and Budget, Paperwork Reduction Pi | roject (0704-0188), Washington, DC 20503. | |--|--|------------------------------------|--| | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE ANI | | | | August 2003 | Fi | nal Contractor Report | | 4. TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | Efficient, Low-Cost Fan Syster | m Research for General Avia | ation | | | and Commuter Aircraft | | | | | | | | WU-505-65-10-00 | | 6. AUTHOR(S) | | | NAS3-27644 | | G.L. Merrill | | | | | | | | | | 7. PERFORMING ORGANIZATION NAM | E(S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION | | | , , , | | REPORT NUMBER | | Advanced Propulsion, Inc. | | | | | 2849 South 44th Street | | | E-14014 | | Phoenix, Arizona 85040 | | | | | | | | | | 9. SPONSORING/MONITORING AGENC | Y NAME(S) AND ADDRESS(ES) | | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER | | National Aeronautics and Space | ee Administration | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Washington, DC 20546–0001 | | | NASA CR—2003-212476 | | 8, | | | | | | | | | | 11. SUPPLEMENTARY NOTES | | | | | This research was originally p | ablished internally as ASTO | 20 in December 1997 Th | is report is a formal draft or | | working paper. Project Manag | | | | | tion code 2200, 216–433–2163 | |): | , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | , | | | | | 12a. DISTRIBUTION/AVAILABILITY STA | TEMENT | | 12b. DISTRIBUTION CODE | | Unclassified - Unlimited | | | | | Subject Category: 07 | Distri | bution: Nonstandard | | | ÿ Ç. | | ownom Tronstandard | | | Available electronically at http://glt. This multipation is a will be found. | | f | | | This publication is available from the state of | ie NASA Center for AeroSpace II | niormation, 301–621–0390. | | | | | . 1 | | | - | _ | _ | ncepts for high bypass turbofans | | | | | ed lower pressure ratio fans for | | good propulsive efficiencies in | the 200 to 400 knot flight s | peed regime. Aerodynam | ic design analyses yielded pre- | This document reports research investigations into efficient, low-cost fan system concepts for high bypass turbofans for future general aviation and commuter aircraft. The research specifically addressed lower pressure ratio fans for good propulsive efficiencies in the 200 to 400 knot flight speed regime. Aerodynamic design analyses yielded predicted efficiency in area of 91 to 92 percent (adiabatic). Low-cost manufacturing studies yielded an aluminum blisk rotor and investment cast stator having lowest cost. Structural design analyses yielded a design having excellent vibratory characteristics and the ability to pass One- and Four-pound bird strikes satisfactorily. The low speed and low pressure fans of the study are estimated to have 24 to 30 EPNdB lower community noise levels than larger, high pressure ratio transonic fans. | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | |-----------------------------
-----------------------------------|-----------------------------|----------------------------| | | 1 1 1 6 | | 76 | | Turbofan; Fan system; Ger | neral aviation; Commuter aircraft | | 16. PRICE CODE | | | | | | | 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT | | OF REPORT | OF THIS PAGE | OF ABSTRACT | | | Unclassified | Unclassified | Unclassified | |